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We propose a novel method to approximate a function on 2D domain by piecewise poly-
nomials. The Voronoi tessellation is used as a partition of the domain, on which the best
fitting polynomials in L2 metric are constructed. Our method optimizes the domain parti-
tion and the fitting polynomials simultaneously by minimizing an objective function indi-
cating the approximation quality. We also provide the explicit formula of the gradient of
the objective function, which makes an efficient gradient-based algorithm workable for
the function minimization. We conduct several experiments to demonstrate the efficacy
of our new approach for generating piecewise polynomial approximations of analytic func-
tions and color images.
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1. Introduction

The problem of approximating a given function concisely
is not only of importance in applied mathematics but also at
the core of many applications in computer graphics. Gener-
ally, a function approximation problem seeks a function in a
small candidate space to closely match an arbitrarily given
target function. The space of polynomials is of particular
interest in function approximation due to their simplicity
and flexibility [1]. In this paper, we are interested in seeking
the optimal piecewise polynomial approximation of a scalar
function defined in 2D domain and exploring its application
to image approximation.

For piecewise polynomial approximation, the quality of
the approximation resultant is affected by the domain par-
tition and degree of the approximation space. The error of
the resultant indicates how well it approximates the target
function, hereinafter, we use the most commonly used L2
norm as the error measure. Once the number of partitions
and the degree of approximation space are specified, the
approximation problem becomes how to divide the
domain into contiguous patches. It is because that as long
as the partition of the domain is given, the optimal polyno-
mial approximation can be simply obtained by solving a
linear least-squares problem. Thus, generating a good par-
tition of the domain is the key challenge to solving the
piecewise approximation problem.

It has be shown in [2] that it is NP-hard to decide whether
the surfaces that correspond to graphs of bivariate functions
can be approximated by polyhedral surfaces within a pre-
specified error. A common heuristic is to recursively subdi-
vide the patch with maximum approximation error into
smaller patches, which usually results in an excessive num-
ber of patches [3]. If a discrete representation of the domain
is given, such as the images in [4] and the triangular meshes
in [5,6], a flooding method can be used to cluster pixels or
triangles into partitions based on minimizing the approxi-
mation error of given polynomials.

Our method works on continuous domain directly. In
order to simplify the computation of finding an appropriate
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domain partition for the purpose of optimal approximation,
we restrict ourselves to the Voronoi tessellation, deter-
mined solely upon the sites (or generators) on the domain.
The approximation error indirectly relies on the positions
of these sites, which can be minimized by an efficient gradi-
ent-based optimization method. This paper is a generaliza-
tion of the piecewise constant polynomial approximation
method proposed by Nivoliers and Lévy in [7]. The specific
contributions of the paper include.

� We propose a variational scheme for function approxi-
mation with piecewise polynomials of an arbitrary
degree defined over Voronoi tessellation.
� The formula of the gradient of the new energy function

can be explicitly derived, which makes it possible to
employ an efficient optimization method.
� Benefiting from using higher degree approximation, our

method is capable of generating visually pleasant
results in image approximation.

After a short review of the related work in Section 1.1,
we describe our method in Section 2. Experimental results
are shown in Section 3. And we draw our conclusion in
Section 4.

1.1. Related work

1.1.1. Polynomial approximation
The problem of approximating a function by polynomi-

als has been investigated extensively, and a number of effi-
cient algorithms have been proposed [1]. Most previous
works focus on the approximation of univariate function.
The more general problem of approximating functions by
multivariate polynomials is complicated and is still an
active subject in the area of research [8]. Generally, if an
orthogonal basis is available, the least-squares approxima-
tion problem can be easily coped with [9]. The construction
of univariate orthogonal polynomials can be done by the
Gram-Schmidt process. Generalizing from univariate case
to multivariate case poses much harder mathematical
and algorithmic challenges. The bivariate orthogonal poly-
nomials construction has been achieved only in some spe-
cial cases, such as on regular hexagon domain [10] and
triangular domain [11]. The construction of multivariate
orthogonal polynomials on any given domain with an arbi-
trary shape is wide open. Thus, we use the power polyno-
mial basis in this paper. Our algorithm achieves good
performance and numerical stability in our experiments,
when low degree polynomial is used.

1.1.2. Variational surface approximation
Cohen-Steiner et al. [5] propose a versatile variational

framework for constructing piecewise linear approxima-
tions of mesh surfaces. The approximation error is mini-
mized by alternating optimizing the partitions of the
domain and finding an optimal fitting plane for each seg-
ment. A distortion minimization flooding method is pro-
posed to cluster mesh facets into partitions. Several
variants of Cohen-Steiner et al.’s method have been pro-
posed to include more types of geometric primitives for
better approximation. Wu and Kobbelt [12] introduce
spheres, cylinders and rolling-ball blend patches as basic
primitives. In [13], the partition of a mesh is optimized
by fitting to ellipsoidal surface regions. Yan et al. [6] extend
[5]’s method for general quadric surfaces. Our method
shares some similarities with [5]’s framework. One impor-
tant difference is that, our method optimizes the segmen-
tation and the fitting primitives simultaneously, by
imposing the condition that the partition of the domain
is a Voronoi tessellation. Optimization of the partition of
the domain is naturally included in our optimization
process.

1.1.3. Image approximation
There has been a lot of research on the automatic

extraction of effective geometric representations from
images. The vector curves and region primitives are usually
used to fit the clusters of pixels obtained by segmentation
or edge detection algorithms. A popular geometric repre-
sentation of image is the linear approximation [14–16],
which is defined by a triangulated subset of the source
image pixel. However, most previous methods do not
explicitly take image discontinuities into consideration.
Due to the C0 continuity of the linear approximation, more
vertices of the triangulation have to be placed along the
both sides of edges in the image to capture the sharp
change of colors. Lecot and Lévy [4] present a method for
vectorizing raster images by using first- or second-order
gradients. It generalizes Cohen-Steiner et al.’s variational
framework [5] to image-processing setting. A flooding
method is developed to cluster pixels into large regions,
to which the high-order functions are fit. The regions could
be with arbitrary shapes and zigzag boundaries. In our
method, we decompose the domain by Voronoi tessella-
tion, which is simple in shape and independent of the
image resolution.

2. Piecewise polynomial approximation

2.1. Objective function

Assume that fP1ðxÞ; . . . ; PmðxÞg is a basis of a polynomial
space Pn of degree equal to a given integer n. Then any
polynomial QðxÞ in Pn can be represented as a linear com-
bination of the basis QðxÞ ¼

Pm
j¼1cjPjðxÞ. Let f ðxÞ be a func-

tion defined over a compact 2D domain X. Suppose that
T ¼ fXi � X; i ¼ 1; . . . N j Xi

T
Xj ¼ ;;8i – j;

SN
i¼1Xi ¼ Xg is

a partition of the domain X. Then over each subdomain
Xi, function f ðxÞ can be approximated by a polynomial Q i

in Pn. Our goal is to find the optimal piecewise polynomial
approximation of f ðxÞ in the L2 norm, i.e., the best
approximation which minimizes the error as follows:

EðfQi 2 PngN
i¼1; T Þ ¼

XN

i¼1

Z
Xi

j f ðxÞ � QiðxÞj2dx: ð1Þ

The optimal solution of the above energy function
includes two components: the optimal partition of the
domain and the optimal polynomial approximation on
each region Xi. In this paper, we are going to restrict our-
selves to the case where T is a Voronoi tessellation of a site
set X ¼ fxigN

i¼1, i.e., Xi is a Voronoi cell of site xi 2 X.
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Notice that, for a fixed partition T , the optimal polyno-
mial approximation Q �i ðxÞ is a minimizer of the following
least-squares problem:

Q �i ðxÞ ¼ arg min
QðxÞ2Pn

Z
Xi

j f ðxÞ � QðxÞj2dx:

The coefficients ðc�1; . . . ; c�mÞ in the polynomial Q �i ðxÞ can
be obtained by solving a linear system:

Xm

j¼0

c�j

Z
Xi

PjðxÞPkðxÞdx ¼
Z

Xi

PkðxÞf ðxÞdx; k ¼ 1; . . . ;m: ð2Þ

Thus, Q �i ðxÞ relies only on the tessellation T . On the
other hand, the Voronoi tessellation T is only determined
by the site positions X. The objective function in Eq. (1)
therefore can be reconsidered as a function of X:

EðXÞ ¼
XN

i¼1

Z
Xi

j f ðxÞ � Q �i ðxÞj
2dx: ð3Þ

In the rest of this section, we will try to find the optimal
positions of the sites which minimize the objective
function.
2.2. Gradient of EðXÞ

Let Ji denote the indices of sites whose Voronoi cells are
adjacent to Xi. To deduce the derivative of EðXÞ with
respect to xi, we only need to consider the items involving
xi in EðXÞ. Hence, the derivative becomes

@EðXÞ
@xi

¼ @

@xi

X
j2Ji

S
fig

Z
Xj

j f ðxÞ � Q �j ðxÞj
2dx: ð4Þ

Notice that, xi appears in both the integrand and the
integral domain of the integral terms. Therefore, we should
also take the variation of the integral domain in differenti-
ation into consideration. Now let us recall the general
Leibniz rule [17] to simplify this formula. Suppose that Dt

is a 2D domain whose boundary @Dt changes smoothly
with respect to t, and gðx; tÞ;x 2 Dt is a function defined
over Dt . Let the velocity vector of a point on the domain
boundary @Dt be denoted by v ¼ @x=@t and n be the out-
ward unit normal vector at the boundary. Then the general
Leibniz rule [17] states:

d
dt

Z
Dt

gðx; tÞdx ¼
Z

Dt

@gðx; tÞ
@t

dxþ
Z
@Dt

gðx; tÞv � nds;

where ds is the element of arc length on the closed bound-
ary curve @Dt .

Applying the general Leibniz rule to Eq. (4), we have

@EðXÞ
@xi

¼
X

j2Ji

S
fig

Z
Xj

@

@xi
j f ðxÞ � Q �j ðxÞj

2dxþ
X
j2Ji

Z
Xij

j f ðxÞ � Q�i ðxÞj
2� j f ðxÞ � Q�j ðxÞj

2
� � @x

@xi
nds;

where Xij ¼ @Xi
T
@Xj is the boundary shared by Xi and Xj.

Let us first consider the integration in the first term in the
above equation. From Eq. (2), we have that Q �i ðxÞ satisfies
Z
Xi

ðf ðxÞ � Q �i ðxÞÞPkðxÞdx ¼ 0; k ¼ 1; . . . ;m:

Thus,Z
Xj

@

@xi
j f ðxÞ � Q �j ðxÞj

2dx

¼ 2
Xm

k¼1

Z
Xj

ðf ðxÞ � Q�j ðxÞÞPkðxÞ
@c�k
@xi

dx ¼ 0:

Now let us turn to the evaluation of the term @x=@xin
on the segment Xij. We notice that the point x on Xij

satisfies

x� xi þ xj

2

� �
� ðxj � xiÞ ¼ 0:

By differentiating the above equation with respect to xi,
we get

@x
@xi
ðxj � xiÞ ¼ x� xi:

Thus, we have @x=@xin ¼ ðx� xiÞ= j xj � xi j. And the
formula for the derivative of EðXÞ with respect to xi is sim-
plified to

@EðXÞ
@xi

¼
X
j2Ji

Z
Xij

j f ðxÞ � Q �i ðxÞj
2� j f ðxÞ � Q �j ðxÞj

2
� � x� xi

j xj � xi j
ds:

ð5Þ

Note that our work naturally generalizes the work of
[7], as our objective function differs from the objective
function in [7] only in the approximation function space.
In particular, our approximation function space is piece-
wise polynomials with an arbitrary order. On contrary,
the approximation function space is restricted to piecewise
constant functions. Consequently, the formula of gradient
(5) for the higher order approximation space is also ana-
logues to the gradient formula in [7]. As both [7] and our
method use a gradient-based solution mechanism, we will
show in next section that the optimization frameworks are
basically the same, with a slightly different approximation
computation in each iteration step.

2.3. Solution mechanism

Efficient optimization solvers such as quasi-Newton
methods [18] require C2 continuity of the objective func-
tion. Whereas, the objective function EðXÞ in Eq. (3) can
only be C0 when the function f ðxÞ is discontinuous. Fur-
thermore, it is shown that, the magnitudes of the deriv-
atives of EðXÞ with respect to different variables may
vary greatly even in the piecewise constant approxima-
tion [7]. Thus, the conventional gradient descent
approach is not suitable for the case in our context
either.

An improved gradient-based method has been
designed for effectively optimizing the objective function
EðXÞ in the piecewise constant approximation case in [7].
Here, we follow this method with making a slight modifi-
cation on the step lengths as follows: Starting from an ini-
tialization, all the positions of the sites are optimized
iteratively as:
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xðjþ1Þ
i ¼ xðjÞi � dðjÞi

@EðXÞ
@xi

�
@EðXÞ
@xi

����
����; i ¼ 1; . . . ;N;

where j is the index of the current iteration, and dðjÞi is the
step length for xi. Notice that, the descent direction here is
obtained by normalizing each component of the gradient
respectively. The descent direction is therefore no longer
the gradient direction, and the optimization method here
is no longer a gradient decent method. The step length
dðjÞi , gradually decreasing to zero, are controlled by the fol-
lowing formula

dðjÞi ¼ dð0Þi

1
2

� � j
Jmax�j

; i ¼ 1; . . . ;N;

where Jmax is the specified maximum number of iterations

and dð0Þi is the initial step length for site xi. In the original

method, dð0Þi for all sites are set to the same value (2% of
the scene bounding box diagonal). The uniform initial step
length limits the method to the problem with a relatively
fixed site number and even distribution. To overcome this,
the initial step length is set to k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
areaðXiÞ

p
, where Xi is the

Voronoi cell of the site i and k is a scaling parameter.
An appropriate magnitude of the scaling parameter is

important. If it is too small, the sites will stay around at
their initial positions, while a too large step length would
amount to redistributing the sites over the domain. With
extensive experiments, we found that k ¼ 0:5 is a good
choice for producing satisfying results. Experiments also
show that the above method is more efficient than several
gradient-based methods, including conventional gradient
descent method, conjugate gradient method, and L-BFGS
method [18], in optimizing the objective function EðXÞ.
The pseudo-code in Algorithm 1 illustrates our algorithm.

Algorithm 1. Piecewise polynomial approximation

Input: a function f ðxÞ on X, an initial site set X on X, a
polynomial basis fP1ðxÞ; . . . ; PmðxÞg and the max
iteration number Jmax

Output: a Voronoi tessellation T corresponding to a
new site distribution X, and a set of polynomials
fQ1ðxÞ; . . . ;QNðxÞg on T

1: Xð0Þ  X; j 0

2: Compute Voronoi tessellation T ¼ fXgN
i¼1 of Xð0Þ

3: dð0Þi  
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
areaðXiÞ

p
=2; i ¼ 1; . . . ;N

4: while j < Jmax do

5: Compute Voronoi tessellation T of XðjÞ

6: Compute the optimal polynomial
approximations fQ1ðxÞ; . . . ;QNðxÞg over T

7: Compute the gradient rEðXÞ
8: for each i 2 f1; . . . ;Ng do

9: dðjÞi ¼ dð0Þi
1
2

	 
 j
Jmax�j

10: xðjþ1Þ
i  xðjÞi � dðjÞi

@EðXÞ
@xi

.
@EðXÞ
@xi

��� ���
11: end for
12: j jþ 1
13: end while
Now let us turn to the initialization of the algorithm. A
good initialization let our local search method converge
fast. In our algorithm, the initialization of sites xð0Þi are
‘‘good’’ if they are situated sufficiently close to a minimizer
of the objective function in Eq. (3). Notice that, a global
minimizer of the objective function in Eq. (3) tends to have
a uniform cumulated approximation errors in each Voronoi
region. Inspired by this, we propose a greedy method for
site initialization as follows: Site is sequentially added
until a user-specified point budget is reached, and the
newly added site is randomly sampled from the Voronoi
region with maximum approximation error.
3. Results and applications

The algorithm was implemented and tested using
C++. The CGAL library [19] is used to compute the
Voronoi tessellation (with a conversion from its dual
Delaunay diagram). Our algorithm has been tested exten-
sively on function approximations by using basis of poly-
nomial space of different degrees. Specifically, the
polynomial bases f1; x; y; xy; x2; y2g; f1; x; yg and f1g have
been used for piecewise quadratic, linear and constant
approximations.

The integrals involved in the algorithm are numerically
computed by using quadrature rules. We used different
quadrature rules for the computation of the integrals,
based on the considerations of efficiency and accuracy. In
particular, if the integrand is smooth, each Voronoi region
is first decomposed to triangles by connecting the centroid
with its vertices, then a three-point Gaussian quadrature
rule (three-point Dunavant rule) for the triangle [20] is
used for the domain integration. When the integrand is
discontinuous, as in image approximation, each triangle
is repeatedly subdivided into smaller sub-triangles by 1–4
split method until the area of sub-triangle is equal or smal-
ler than five pixels, then the one-point Dunavant rule is
used. For the boundary integration, the classical two-point
Gaussian quadrature rule and one-point Gaussian quadra-
ture rule are used for the smooth and non-smooth inte-
grands, respectively.

3.1. Testing functions

The first test case is the function

f ðx; yÞ ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
; �

ffiffiffi
2
p

2
6 x; y 6

ffiffiffi
2
p

2
;

and piecewise constant and piecewise linear approxima-
tions with 500 sites. The optimized Voronoi tessellations
for both approximations are shown in Fig. 2. Notice that,
the orientations of the cells align with the isoline and the
gradient direction of the function in the piecewise constant
and linear approximations, respectively.

The second test case is a paraboloid

f ðx; yÞ ¼ x2 þ y2; �1 6 x; y 6 1;

and a piecewise linear approximation. The result Voronoi
tessellation and the approximating surface are shown in



Fig. 1. Image approximation on a Voronoi tessellation with 1000 patches by piecewise polynomials.

Fig. 2. Approximations of the function 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
on square. The domain is color-coded by the function value. Left: the result Voronoi tessellation in

piecewise constant approximation. Right: the result Voronoi tessellation in piecewise linear approximation. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. It is worth pointing out that, in this special case of
linear approximation, our method generate a nearly hexag-
onal tiling, which is similar to the result yielded by centroi-
dal Voronoi tessellation (CVT) method [21]. Our objective
function and the CVT function differ in both the distance
measures and the linear functions. In particular, the
objective function of CVT method [21] is defined as the dis-
tance between the function and its linear approximant in



Fig. 3. Approximation of the quadratic function f ðx; yÞ ¼ x2 þ y2 by piecewise linear polynomials on square. (a) and (b) The result Voronoi tessellation and
the fitting surface by our method; (c) and (d) the result domain tessellation and the fitting surface by VSA method [5].
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the L1 norm, which actually measures the volume between
the paraboloid and a circumscribing piecewise linear func-
tion (i.e., the local tangent plane) [22]. Whereas, we use the
L2 norm as the distance measure in our objective function
definition, and the linear function is constrained to the
optimal linear approximation.

Despite the use of different distance measure and
approximating polynomials, both methods yield similar
resultant in the sense that the tessellation is nearly a hex-
agonal tiling, as can be observed in Fig. 3. This phenomena
can be explained by the fact that, with respect to Lp metric,
any optimal linear approximation of a function have the
same element’s aspect ratio j rmin

rmax
j, where rmin and rmax

are the minimum and maximum of eigenvalues of its
Hessian [23], respectively. Our method can be viewed as
a more general method than CVT method in terms of gen-
erating tessellations with a variety of cell shapes. In Fig. 3,
we also compare our method with the variational shape
approximation (VSA) method by [5]. It can be obviously
observed in Fig. 3 that our method generates better result
than VSA method in the sense that the tessellation gener-
ated by our method is more uniform than the one by VSA
method.

The third test case is a discontinuous function

f ðx; yÞ ¼ sinðpðxþ 1=2ÞÞ cosðpyÞ; � 1
2 6 x; y 6 1

2

exy � 1; others

(
;

� 1 6 x; y 6 1;
Fig. 4. Approximation of a discontinuous function. Left: the result Voronoi te
and a piecewise linear approximation. For the approxima-
tion methods based on triangulations [15,24], additional
steep faces are needed to connect the two disconnected
pieces of the function. Unlike those previous methods,
our method is capable of representing the discontinuity
of the function faithfully, since the resultant Voronoi
regions automatically align along the line where the func-
tion is discontinuous, see in Fig. 4.

3.2. Image approximation

Our method can be directly applied to the approxima-
tion of gray-scale image, which can be taken as a discontin-
uous function. For a RGB color image, its red, green and
blue channels can be separated from the image and consid-
ered as three independent functions rðxÞ; gðxÞ, and bðxÞ,
respectively. In order to simultaneously approximate these
three functions in the same image domain tessellation, we
modify the objective function in Eq. (3) to

EðXÞ ¼
XN

i¼1

Z
Xi

j rðxÞ � R�i ðxÞj
2þ j gðxÞ � G�i ðxÞj

2
�

þ j bðxÞ � B�i ðxÞj
2
�

dx; ð6Þ

where R�i ðxÞ;G
�ðxÞ, and B�ðxÞ are the optimal polynomial

approximations of rðxÞ; gðxÞ, and bðxÞ on Xi, respectively.
Algorithm 1 can still be applied to the optimization of
the modified objective function as its derivatives can be
evaluated in the same fashion in Section 3.2.
ssellation. Right: the fitting surface by piecewise linear approximation.



Fig. 5. Algorithm overview of color image approximation using linear polynomials. (a) Original image; (b) initialization; (c) after 10 iterations; (d) final
result after 150 iterations. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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The intermediate results generated in our algorithm in
image approximation are shown in Fig. 5. The initial sites
are sequentially added into the Voronoi region with maxi-
mum approximation error, as shown in Fig. 5(b). After a
few iterations, the positions of the sites are progressively
adjusted to reduce the approximation error. And the
boundaries of Voronoi regions align with the feature lines
of the image in most case.

3.2.1. Post-processing
As our method only focuses on minimizing the approx-

imation error over the whole image domain in the least-
squares sense, there may exists a small number of Voronoi
regions whose approximation errors are still severe after
optimization. These Voronoi regions may cross the feature
lines, cover fine details or occupy large areas. However,
only Voronoi regions crossing feature lines lead to obvious
Fig. 6. Detecting the Voronoi regions crossing feature lines. (a) detected region
regions according to the color-bias, marked in red color; (c) intermediate resul
being optimized. (For interpretation of the references to color in this figure lege
artifacts in the result image. As shown in Fig. 5(b), the
Voronoi regions partially overlap with two different
objects of the original image in the same time, hence the
resultant image is locally visually unpleasant. We here
introduce a post-processing step to locate and destroy
Voronoi regions crossing feature lines to eliminate the
artifacts.

As a Voronoi region with a large approximation error
does not necessarily leads to obvious artifacts, we need
to introduce another metric, according to which, we can
distinguish the Voronoi regions crossing feature lines. For
the sake of simplicity, we convert a color image to gray-
scalar one and define the color-bias of a Voronoi region
as follows: the pixels within this Voronoi region are
divided into two groups according to whether its gray
value is bigger or smaller than the average color, then
the color-bias of the Voronoi cell is defined as a
s according to approximation error, marked in yellow color; (b) detected
t with newly inserted sites; and (d) final result with newly inserted sites
nd, the reader is referred to the web version of this article.)



Fig. 7. Image approximation by piecewise polynomials with 1000 patches.

Fig. 8. Multi-resolution approximation by piecewise quadratic polyno

Table 1
The statistics of the running times.

Fig. Image res. #Sites Order Jmax Time (s)

1 600 � 600 1000 Constant 150 120.787
Linear 143.296
Quadratic 145.178

2 N.A. 500 Constant 1000 23.593
Linear 24.904

3 N.A. 500 Linear 300 7.392
4 N.A. 680 Linear 300 10.51
5 1024 � 768 500 Linear 150 274.911
7 512 � 512 1000 Constant 150 104.861

Linear 113.814
Quadratic 114.815

8 300 � 208 500 Quadratic 150 33.97
1000 59.263
2000 171.224
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combination of the absolute difference of the average col-
ors of the two pixel groups and the distance between the
centroids of the two pixel groups. Roughly, a region with
a big color-bias is likely to lean toward two colors, that
is, this region crosses a feature line of the image. Having
the color-bias in hand, the regions with artifacts can easily
be identified according to the value of the color-bias. As
shown in Fig. 6, the Voronoi regions with the 50 largest
color-biases are marked in red. As a comparison, the Voro-
noi regions with the 50 largest approximation errors are
marked in yellow.

Once a Voronoi region with artifacts is detected, we
proceed to divide it into two parts by removing the original
site and inserting two points at the centroids of the two
pixel groups, respectively. Then we run Algorithm 1 again
to optimize the positions of the newly added sites, as
mials with 500 (left), 1000 (middle) and 2000 (right) patches.



Fig. 9. Comparison with the image vectorization method by [4]. Left: result from [4] with 180 primitives. Right: linear approximation result by our method
with 1500 patches.
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shown in Fig. 6. Experiments show that, our method can
capture most feature lines of the image after the ‘‘insert-
optimize’’ process is completed.

Some approximation results using constant, linear, and
quadratic polynomial bases are shown in Figs. 1, 7 and 8.
The piecewise constant approximation proposed in [7] cre-
ates mosaic-like effect, where color abruptly changes
between neighboring patches. By using high-order polyno-
mial basis, the approximation quality can significantly be
improved, as illustrated in Figs. 1 and 7. A multi-resolution
approximation by piecewise quadratic polynomials is
shown in Fig. 8.

All the experiments are conducted on a PC with Intel I5
3.1 GHz CPU and 4.0 GB RAM. Our optimization process
usually takes about a few seconds to several minutes,
depending on the site and iteration numbers and the image
resolution. The statistics of the running times of the exam-
ples are given in Table 1.

4. Conclusion

In this paper, we have articulated a novel method that
computes a piecewise polynomial approximation of a func-
tion on 2D domain. We extend Nivoliers and Lévy’s method
[7] to higher order approximations. The domain partition is
constrained to be a Voronoi tessellation of a set of sites.
The objective function which measures the quality of the
approximation only depends on the positions of the sites.
We derive the close-form expression of the gradient of
the objective function. Thus an efficient optimization
method can be adopted for the minimization. Experiments
are conducted to show its efficacy in approximating ana-
lytic functions, and its applicability to color image
approximation.

4.1. Limitations and Future work

Our formulation of the approximation problem applies
to polynomials of any order. However, as we use power
polynomial basis in this paper, the coefficient matrix of
the linear system in Eq. (2) will become ill-conditioned
when high order basis are employed, which leads to
numerical instabilities in the computation. We therefore
plan to further refine our algorithm by integrating other
stable bases, such as the Bernstein polynomials and other
bi-variable splines [25], which although do not possess
orthogonality property but have shown numerical stability
in practice.

Another limitation is that our method only focus on
piecewise smooth approximations. The algorithm is very
practical to applications such as image approximation.
However, when global continuity in the approximation
result is desired, our method would be inapplicable. Due
to the constraint of Voronoi tessellation, our method usu-
ally needs much more samples to achieve the similar visual
fidelity to the original image compared to other image vec-
torization methods, such as the Ardeco method [4] as
shown in Fig. 9. To achieve satisfactory vectorized images,
our method need be further refined by paying more atten-
tions to region representation and feature preservation.

In this paper, we only consider the partition of the pla-
ner domain with the Euclidean metric. For future work, we
will extend our method to surface domain, where the geo-
desic metric [26] can be used to build the Voronoi tessella-
tion. It is also promising to incorporate the geodesic
distance on the image domain [27,28], which will benefit
the generation of structure-sensitive tessellations of the
image domain. As it has been pointed out in the second
testing function in Section 3.1 that our method generates
result similar to the CVT method in the linear approxima-
tion case. Given the widespread use of CVT method, it is
worth to further study the relation between the objective
functions in our method and in CVT method. And we would
also explore the potential applications of our method, such
as mesh generation, superpixel segmentation, image vec-
torization and so on.
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