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In this paper, we present a novel method for generating cell complexes with anisotropy conforming to
the Hessian of an arbitrary given function. This is done by variationally optimizing the discontinuous
piecewise linear approximation of the given functions over power diagrams. The resulting cell complexes
corresponding to the approximations are referred to as Optimal Power Diagram (OPD). A hybrid opti-
mization technique, coupling a modified Monte Carlo method with a local search strategy, is tailored for
effectively solving the specific optimization task. In contrast to the Optimal Voronoi Tessellation (OVT)
method (Budninskiy et al., 2016), our OPD method does not restrict the target functions to be convex,
providing more diverse classes of tessellations of the domain. Furthermore, our OPD method generally
yields smaller approximation errors than the OVT method, which uses underlaid approximants. We
conduct several experiments to demonstrate the efficacy of our optimization algorithm in finding good
local minima and generating high-quality anisotropic polytopal meshes.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Meshes are important representations used in a wide range
of applications, including geometric modeling, computer graphics,
mechanical engineering and simulations. The complex geomet-
ric objects are represented as an assembly of discrete elements,
e.g., triangles, quadrilaterals and polygons in 2D as well as their
counterparts in higher dimensions. Numerous algorithms have
been developed to produce high-quality isotropic meshes, and
some of them are commercially available. While the problem of
isotropic meshing has been well studied, the research on convert-
ing complex objects into an anisotropic mesh is relatively behind.

Anisotropic meshes are often advantageous in terms of com-
putational cost and solution accuracy in finite element simula-
tions for resolving physical problems with solutions changing
more rapidly in one direction than others. In shape/functional
approximation, anisotropic meshes also provide better interpo-
lations/approximations of geometries/functions having strong di-
rectionality with fewer elements. However, many recent attempts
have been exclusively focused on extending isotropic meshing
to anisotropic simplicial meshing and quadrilateral/hexahedral
meshing, due to their popularity. In this paper, we propose a novel
Optimal Power Diagram (OPD) method for generating anisotropic
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meshes formed by convex polygons/polyhedrons. The specific con-
tributions of this paper are as follows:

1. We extend the Optimal Voronoi Tessellation (OVT) energy
function thatwas previously used for generating anisotropic
polygonal/polyhedral meshes. From the point view of func-
tional approximation, theOVT energy function describes the
error between a convex function and its underlaid polytope
in the L1 norm.We relax the constraints for both the approx-
imant and the target function of the OVT energy function.
More precisely, the target function is not necessarily con-
vex, which is approximated by linear functions individually
defined over sub-regions in the L2 norm.

2. We use power diagrams to represent the tessellations of a
given domain, so that the energyminimization problem can
be tackled efficiently. Minimizing the generalized energy
boils down to finding the optimal partition of the domain,
which is difficult in general cases. As a matter of fact, it is
NP-hard to decide if a bivariate function can be approxi-
mated by a piecewise linear function with a pre-specified
number of facets andwithin an approximation error thresh-
old, as has been shown in [1]. To make the problem solv-
able, we restrict the partitions to power diagrams, which
havemany important applications in various fields. Actually,
this is not even a restriction for cell complex generation of
volumes, as an arbitrarily simple cell complex in 3D can be
represented by a power diagram [2].
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3. A hybrid optimization algorithm is presented to efficiently
solve the specific minimization problem in this paper. It
is very challenging to minimize the modified energy func-
tion, due to its highly non-linear and non-convex nature.
Our hybrid optimization method, combining a local search
with a global optimization technique, reduces the chance of
getting stuck at poor local minima and converges fast to a
deep enough local minimum. Moreover, a comprehensive
initialization method is proposed to tremendously improve
the results.

The remainder of this paper is organized as follows. We review
the related works in Section 2 and introduce some preliminary
concepts and notations in Section 3. In Section 4, we extend the
OVT energy function and derive closed-form expressions for its
derivatives. In Section 5,weprovide the overviewand technical de-
tails of our hybrid optimizationmethod for theminimization of the
proposed energy function. Finally, after giving some experimental
results and comparisons with the OVT method in Section 6, we
conclude this paper with discussions and limitations in Section 7.

2. Related work

In this section,we give a brief review of references that aremost
related to this work, with a focus on methods for anisotropic mesh
generation.

Anisotropic simplicialmeshing.Anisotropic simplicialmeshes
are triangulations of a given domain whose elements stretch
along the desired directions. The anisotropy at each point of the
domain is usually given as a symmetric matrix. The eigenvectors
and eigenvalues of the matrix describe the desired stretching
directions andmagnitudes ofmesh elements. Delaunay refinement
is a widely used technique for generating high-quality isotropic
simplicial meshes [3]. By taking anisotropy into account, various
extensions to Delaunay refinement have been proposed to gener-
ate anisotropic Delaunay meshes [4–7]. Anisotropic mesh quality
can be measured in different ways and optimized by combining
the operations of vertex redistribution and retriangulation [8,9].
By embedding the anisotropic space into a higher dimensional
isotropic one, anisotropic meshes can be obtained via constructing
isotropic meshes in the embedded space [10–12].

Anisotropic Voronoi. The concept of Centroidal Voronoi Tes-
sellation (CVT) has been successfully applied to high-quality
isotropic mesh generation [13]. CVTs can be generalized to
anisotropic Voronoi tessellations, by using different distance def-
initions [14–17]. Generally, the bisectors between sites are no
longer straight under the generalized distance measures, making
the precise construction of anisotropic Voronoi cells computa-
tionally cumbersome. Approximation methods are thus adopted
to compute anisotropic Voronoi diagrams, by clustering discrete
elements of a given mesh [18,17,19] or constructing restricted
Voronoi diagrams instead [15,20]. In our method, power diagrams
are used as the representation of convex tessellations of the do-
main, which allow more flexibility than Voronoi diagrams in op-
timization [21] and can be efficiently computed by off-the-shelf
computational geometry libraries.

Function approximation based methods. Anisotropic meshes
can be obtained by minimizing the approximation error between
a target function f and its piecewise linear approximation. The
optimal simplices with a minimal approximation error have been
shown to be stretched along the two principal directions of f , with
an aspect ratio equal to

√
|kmax/kmin|, where kmax and kmin are

the principal curvatures [22,23]. Chen et al. [24,25] proposed the
concept of optimal Delaunay triangulation which minimizes the
linear interpolation error for a given convex function. Fu et al. [26]

generalized optimal Delaunay triangulation to anisotropic met-
rics by constructing convex functions that locally match a given
anisotropic metric. The anisotropy of the resulting mesh elements
conforms to the Hessian of an input target function. A CVT can also
be defined from a variational point of view, which minimizes the
error between a paraboloid f (x) = |x|2 and its underlaid piecewise
linear approximation. Budninskiy et al. [27] gave an anisotropic
extension of CVTs, called Optimal Voronoi Tessellations (OVTs),
which optimizes the piecewise linear approximation of convex
functions over anisotropic cell complexes. Several other methods
for generating function-dependent Voronoi diagrams have been
studied in [28,29]. In this paper, we present an extension of OVTs
based on the approximation of functions that are not necessarily
convex.

Global optimization. Due to the highly non-linear and non-
convex nature of the CVT energy, the commonly used local search
methods such as the Lloyds iteration and quasi-Newton methods
tend to get stuck at shallow localminima. Several global techniques
were developed to search a deep enough local minimizer and
even a globalminimizer. For example, aMonte Carlo-minimization
(MCM) based framework [30] was adopted to compute Euclidean
CVT in [31], in which the Monte Carlo method was used to pass
from one local minimum to the next local minimum obtained by
the L-BFGSmethod, and ultimately to the global minimum. Similar
methods were also used for generating constrained centroidal De-
launay meshes [32] on surfaces and computing the optimal Delau-
nay triangulation in 3D space [33]. A differential evolution based
method was developed to compute the globally optimal geodesic
CVT energy on triangle meshes [34]. In this paper, we tailor the
MCMmethod to our specific problemandprovide a comprehensive
initialization technique to speed up the convergence.

3. Background

In this section, we introduce preliminary concepts and notation
that will be used throughout the entire paper.

Power diagram. Let X = {xi}ni=1 be a set of n distinct sites in
a compact domain Ω ⊂ Rd and W = {wi}

n
i=1 be a set of real

numbers. Each site xi is associated with a real number wi, called
the weight of xi. Then the power cell Ωi of xi is

Ωi = {x ∈ Ω | ∥x− xi∥2 − wi ≤ ∥x− xj∥2 − wj,∀i ̸= j},

where ∥ · ∥ denotes the Euclidean norm. The power diagram of
the weighted point set (X,W ) = {(x1, w1), . . . , (xn, wn)} is the
cell complex formed by the collection of power cells {Ωi}

n
i=1. The

power diagram is a generalization of the Voronoi diagram, which
coincides with the Voronoi diagram of the sites X when all the
weights are the same [35].

Optimal Voronoi tessellations. Let f : Ω → R be a convex
function in the compact domain Ω ⊂ Rd, and X = {xi}ni=1 be a set
of n distinct sites in Ω . For each site xi, we denote Ti(x) the tangent
hyperplane of f (x) at xi. Then optimal Voronoi tessellations [27] are
minimizers of

EOVT (X,V) = ∥f − fT∥L1 =
n∑

i=1

∫
Vi

(f (x)− Ti(x))dx, (1)

where fT is a piecewise linear approximation of the target function
f , formed by the set of tangent hyperplanes {Ti(x)}ni=1, and V =
{Vi}

n
i=1 is a tessellation of the domain. Since the function f is convex,

tangent hyperplanes Ti(x) are always below it, that is, f (x) ≥ Ti(x)
for all i. It has been shown in [27] that for a given set of sites X,
the optimal tessellation V is the projection of the upper envelop
of {Ti(x)}ni=1, which can be efficiently obtained by constructing a
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power diagram of a set of shifted and weighted sites {(pi, wi)}ni=1.
We have

pi =
1
2
∇f (xi), wi =

1
4
|∇f (xi)|2 + f (xi)−∇f (xi) · xi.

The OVT energy function in Eq. (1) can be minimized by a Lloyd-
based approach which alternately optimizes the locations of sites
and updates the tessellation of the domain. Note that for the case of
f (x) = |x|2, V is simply the Voronoi tessellation of X , and the OVT
energy function coincides with the centroidal Voronoi tessellation
energy function [13].

4. Optimal power diagrams

According to [22,23], the optimal aspect ratio of linear elements
is dictated by the local Hessian of a target function f , regardless
whether f is convex or not. In this section, we describe how to
modify the OVT function in Eq. (1) to compute anisotropic cell
complexes which are cast as the optimal piecewise linear approx-
imations of given target functions that are not necessarily convex.

4.1. Formulation

Suppose f : Ω → R is a real-valued function and is continuous
in the compact domain Ω ⊂ Rd. Given a tessellation V of the
domain Ω , we can construct the best L2 fitting hyperplane of f (x)
for each cell Vi, denoted by Pi(x). Then we approximate f with a
discontinuous piecewise linear function fP (x) =

∑n
i=1Pi(x)1Vi (x),

where 1Vi is the indicator function of a cell Vi. We formulate our
energy function as follows:

E(V,P) = ∥f − fP∥2L2 =
n∑

i=1

∫
Vi

(f (x)− Pi(x))2dx,

where P = {Pi(x)}ni=1 is a set of linear functions. As the function f
is not convex and the fitting hyperplanes cannot guarantee to be
always below or above the function f , we measure the approxima-
tion error between f and fP using the L2 norm instead of the L1 norm
in the OVT function.

The determination of the best tessellation V and the corre-
sponding best-fit hyperplanes is generally NP-hard [1]. To simplify
the computation, we restrict the tessellation to a power diagram,
which is uniquely determined by the site positions X and the
weightsW . Note that, the L2-norm best-fit hyperplane on each cell
is determined once the tessellation is given. We denote by P∗i (x)
the best linear fit on a cell Vi. Hence, the above energy function
essentially depends on the site positions and weights as follows:

EOPD(X,W ) = ∥f − fP∥2L2 =
n∑

i=1

∫
Vi

(f (x)− P∗i (x))
2dx. (2)

Thus we refer to minimizers of the above energy function as Opti-
mal Power Diagrams (OPD).

4.2. Derivatives of energy function

Wenow derive the gradient of our energy function for later use.
First, we consider the derivative of energy function with respect to
site position xi. Applying the general Leibniz rule [36] to Eq. (2), we
have
∂EOPD(X,W )

∂xi
=

∑
j∈Ji∪{i}

∫
Vj

∂

∂xi
|f (x)− P∗j (x)|

2dx

+

∑
j∈Ji

∫
Vij

(|f (x)− P∗i (x)|
2
− |f (x)− P∗j (x)|

2)
∂x
∂xi

nds,

where Ji is the indexes of sites with cells adjacent to Vi, Vij = ∂Vi ∩

∂Vj is the common boundary of Vi and Vj, and n is the outward unit
normal vector on the boundary of Vi. According to the envelope
theorem, the first term in the above equation vanishes. Now, let us
consider the evaluation of ∂x/∂xin in the second term. Note that,

(x−
xi + xj

2
) · (xj − xi) = wi − wj, for x ∈ Vij.

Differentiating both sides of the equation with respect to xi, we
obtain
∂x
∂xi

(xj − xi) = x− xi.

Thus, we have ∂x/∂xin = (x− xi)/|xj − xi|. Then the derivative of
EOPD(X,W ) with respect to xi can be simplified to
∂EOPD(X,W )

∂xi
=

∑
j∈Ji

∫
Vij

(|f (x)− P∗i (x)|
2
− |f (x)− P∗j (x)|

2)
x− xi
|xj − xi|

ds.
(3)

The derivative of EOPD(X,W ) with respect to wi can be found in the
same fashion:
∂EOPD(X,W )

∂wi
=

∑
j∈Ji

∫
Vij

(|f (x)− P∗i (x)|
2
− |f (x)− P∗j (x)|

2)
1

2|xj − xi|
ds.

(4)

5. Optimization algorithm

Minimizing the OPD energy function in Eq. (2) is difficult, due to
its highly non-linear and non-convex essence. As shown in Fig. 2,
the energy function presents many shallow local minima when
we hold all variables except one site position or weight constant.
Hence, directly applying a traditional local search method suffers
from a common problem, i.e., trapping in local solutions. Whereas,
conventional global optimization methods are usually very time-
consuming. In this section, a hybrid local and global optimization
method is adopted to efficiently solve our OPD energy function.
Before getting into the details of our algorithm, we first provide
some observations on the optimization of the OPD energy function,
which relives the influence of variables to be optimized on the ob-
jective function and gives rise to an efficient optimization method
based on block coordinate update.

Note that, the OPD energy function in Eq. (2) contains two
types of variables (site positions and weights). One of the most
straightforward methods for its optimization is using a gradient-
based local search with a random initialization and without dis-
criminating these two types of variables. As shown in Fig. 3(a),
starting from a set of 1000 sites randomly sampled from the given
domain and equal weights, a gradient-based local search method
(the L-BFGS method in this paper) gets trapped in a shallow local
minimumwhenwe optimize all variables simultaneously, yielding
a low-quality tessellation; see Fig. 3(b). Meanwhile, we find that
optimizing site positions before optimizing all variables usually
produces much better results, as shown in Fig. 3(c). Starting from
the same random initialization in Fig. 3(a) and fixing the weights
in the optimization, the L-BFGSmethod converges to a deeper local
minimum, leading to a tessellation with much higher quality than
the result in Fig. 3(b). The intermediate result in Fig. 3(c) can be
further improved by applying local search again, with all variables
involved in the optimization; see Fig. 3(d). More long and thin cells
are introduced which better convey the expected anisotropy. The
plot of approximation error versus optimization iteration num-
ber also illustrates that this block-coordinate-descent-like method
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converges to a deeper local minimum. In other words, site posi-
tions are themost influential variables in the optimization process,
while weights exert a smaller influence on the minimization of
the objective function. Another benefit of optimizing site positions
before weight optimization is that it reduces the chance of in-
troducing large differences on weights. A power diagram coupled
with weights varying over a wide range usually has sites locating
outside the corresponding cells, as shown in Fig. 3(b), leading to a
low-quality dual regular triangulation.

5.1. Overview of OPD optimization algorithm

Global minimization of a nonconvex objective function with
many local minima is generally difficult, many efforts have been
made to speed up the computation. Among them, theMonte Carlo-
minimization (MCM) method [30], which combines the power of
an efficient local search method to find local minima and that of
the Monte Carlo method in global combinatorial optimization, is
simple yet efficient to overcome the multiple-minima problem.
Roughly speaking, theMCMmethod considers all local minimizers
obtained by interleaving perturbation and local searching. A new
local minimum is accepted if either it is better than the current
local minimum, or it satisfies a pre-specified probability condition.
Based on the above observations in Fig. 3, we modify the standard
MCM method to efficiently minimize the OPD energy function. As
shown in Fig. 4, taking a desired site number n and a target function
f (x) as input, our algorithm consists of three stages: initialization,
position optimization and position–weight optimization. During
position optimization and position–weight optimization, the fol-
lowing three steps are carried out to find theminimizer of the OPD
energy function:

Step 1. Perturb the site positions or/and weights by using
specific perturbation strategies. Denote the perturbed sites
and weights by X ′ and W ′, respectively.
Step 2. Optimize the site positions X ′ or/and weights W ′
simultaneously using the L-BFGS method, upon which the
approximation error EOPD(X ′,W ′) can be computed.
Step 3. If EOPD(X ′,W ′) < EOPD(X,W ), we accept new site po-
sitions and weights, i.e., X ← X ′ and W ← W ′. Otherwise,
if EOPD(X ′,W ′) > EOPD(X,W ) in successive three times of
perturbation and optimization, stop.

Note that, site positions are more important in the optimization
of the OPD energy function, as we have observed previously. We
can have an expectation that optimizing site positions thoroughly
before optimizing all variables together will significantly speed
up the convergence. Hence, our optimization algorithm is applied
twice: the first time we only optimize site positions (position
optimization) and the second time we optimize all variables to
achieve a deeper local minimum (position–weight optimization).
Details of the algorithm will be given in the rest of this section.

5.2. Initialization

Providing a good initial guess is critical for optimization to find
a deep local minimum. Here, we generate an initial guess that is
close to an optimal solution, which will considerably speed up the
iteration progress.

Our initialization algorithm holds all the weights constant and
takes a target f (x), the desired site number n and a batch number
m as input. We start with a small number of sites, and then add
more sites adaptively in each subsequent iteration, guided by ap-
proximation errors, so that the approximation quality is improved
progressively. The initialization phase consists of the following
steps:

Step1. The first batch ofn/m sites, randomly sampled for the
given domain Ω , are optimized using the L-BFGS method.
Then, the approximation error on each cell of the tessella-
tion can be computed.
Step 2. The n/m cells with the largest approximation errors
are selected, with one new site inserted into each of them.
In particular, we compute the principal axes of each selected
cell using principal component analysis (PCA), and a new
site is added next to the current site along the direction of
the short axis. This new site placement operation is called
site insertion in the following sections.
Step 3. To escape from the current local minimum and
find another possibly better local minimum, each site xi is
perturbed by a small amount in an arbitrary direction:

x′i = xi + λliv

where li is the length of the short axis of the corresponding
cell Vi, λ is a factor used to adjust the magnitude of the
perturbation, and v is a random vector within a unit 2D
disk or 3D sphere. Hereinafter, this perturbation operation
is referred to as local perturbation. Then, all the site positions
are optimized by the L-BFGS method.
Step 4. If all batches of sites are added, stop; otherwise,
update the approximation error on each cell and go back to
Step 2.

Note that, as an initialization for a new round of local search in
Step 3, the positions of newly added sites in Step 2 is of critical
importance. Similar to previous observations, a random place-
ment of newly added site at each selected cell would also lead to
unsatisfying results. Examples are shown in Fig. 5. By randomly
placing a new site at each selected cell, our initialization algorithm
results in shallow local minimizers, especially when the input
target function shows strong anisotropic property, see Fig. 5(a).
Whereas, adding new sites at short axes gives a better anisotropic
approximation to the input function, and leads to a much deeper
local minimizer, see Fig. 5(b). This site insertion method does no
harm for the isotropic case, see Fig. 5(d), which generates similar
results to the random insertion method in Fig. 5(c).

It is also worth pointing out that it is hard to determine the
right number of batches such that the approximation can reach
the best quality. Generally speaking, having fewer sites inserted in
each step needsmore iteration steps, leading to slower approxima-
tion and smaller approximation error. While having more newly-
inserted sites in each approximation step needs fewer iteration
steps, but may result in larger approximation error. The worst case
is adding all sites at once, as shown in Fig. 3(c), which results in a
much shallower localminimum than the result obtained by adding
new sites in batches in Fig. 5(b). Empirically, we insert n sites by 20
batches, which reaches a good balance between computation time
and approximation quality.

5.3. Perturbation

The results of our comprehensive initialization can be further
improved by the aforementioned MCM global optimization which
involves perturbation and local searching.

Position perturbation. The proposed perturbation strategy se-
quentially applies two types of perturbations: global perturbation
and local perturbation. In global perturbation, 1% of the sites whose
cells have the smallest approximation errors are removed. In com-
pensation, each of 1% of the cells with the largest approximation
errors is split by adding a new site, using the site insertion op-
eration in Step 2 of Section 5.2. In local perturbation, each site is
perturbed as Step 3 of Section 5.2. Note that, the factor λ plays
an important role in adjusting the perturbation magnitude. Too
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small λ may lead to a failure of escaping from the current local
minimizer. Whereas, too large λ would amount to re-starting the
optimization from a random initialization. Empirically, λ is set to
be 0.2 in all our experiments. As can be observed in Fig. 6(b), our
global optimization method helps find a deeper local minimum,
benefiting from theperturbations. It is alsoworth pointing out that,
it is the cooperative effect between global and local perturbations
that allows our algorithm to reach deep local minima. As shown in
Fig. 6, the local minimum obtained by solely using local perturba-
tion is shallower than the local minimum obtained by using both
global and local perturbations in position optimization.

Weight perturbation. In the position–weight optimization,
weights provide additional degrees of freedoms and allow a better
approximation to the given function. After adding perturbation to
sites, a local perturbation is also added to eachweight. In particular,
eachweightwi is randomly perturbed by amagnitude less thanβli,
where li is defined in Step 3 of Section 5.2 and β is an adjustable
factor empirically chosen as β = 0.1. Results in Fig. 7 indicate that
the approximation result obtained from position optimization is
further improved in the following position–weight optimization,
as more degrees of freedom are exploited to control the local
anisotropy.

5.4. Terminating condition

In our modified MCM method, a deep local minimum is found
in a more aggressive way, i.e., a worse local minimum is always
rejected, instead of accepting it according to a probability in the
original MCM method. Our algorithm terminates when it fails to
decrease the energy after successive three times of perturbation or
reaches a pre-definedmaximum iteration number. Benefiting from
the delicate initialization, our method usually achieves satisfying
results within 20 iterations of position optimization and 5 itera-
tions of position–weight optimization. Thus, in all our experiments
(except the experiment shown in Fig. 3), the maximum iteration
numbers of position optimization and position–weight optimiza-
tion are set to 20 and 5, respectively.

6. Results

In this section, we present several experimental results to
demonstrate the effectiveness of our OPD method and compare it
with the OVT method. Voronoi cells restricted to a given domain
are computed using an efficient clipping method proposed in [37].
All the experiments were performed on a machine with a 3.3 GHz
Intel Xeon processor and 12 GB RAM.

Non-convex function approximation.We first conduct our al-
gorithm on several non-convex functions in the 2D case to demon-
strate the capability of our algorithm in generating anisotropic
tessellations. Anisotropy described by the Hessian of the given
non-convex functions may change greatly from region to region.
The experimental results shown in Figs. 1(c), 8, 9 and 12 indi-
cate that the generated tessellations well capture the expected
anisotropic variations.

Density control. By adding a non-negative scalar function to
modulate the L2 norm in the OPD energy function (2), our method
is capable of generating anisotropic mesh with density adapting to
the scalar function. In particular, we compute the minimizer of the
modified energy function

EOPD(X,W ) =
n∑

i=1

∫
Vi

ρ(x)(f (x)− P∗i (x))
2dx, (5)

whose derivative can be derived in the same manner as Eq. (2).
Fig. 9 shows that the generatedmeshes adapt to both the predicted
anisotropy and density.

Fig. 1. Optimal power diagrams based on discontinuous piecewise linear approx-
imations of different target functions: (a) f (x, y) = x2 + y2; (b) f (x, y) = x4 + y4;
and (c) f (x, y) = xy.

Fig. 2. Energy landscape near xi , with an input function f (x, y) = sin(π (x +
0.5)) cos(πy). (a) All sites and weights are held constant except the position or
weight of site xi; (b) variations of the energy function with respect to site xi; and (c)
plot of approximation error with respect to weight wi varying from−35 to 35.

3D results. Our algorithm is naturally applicable for 3D mesh
generation and provides the same control over anisotropy and
density. Fig. 10 shows an example of anisotropic meshing on a
simple spherical domain, and the cutaway views show that the
cells precisely get aligned to the expected anisotropy. In Fig. 11,
our method generates a sequence of meshes from isotropic mesh
to anisotropic meshes (with aspect ratios being 1, 2 and 8, re-
spectively) on a geometric model. The cutaway views show that
the aspect ratio of cells are effectively controlled by the input
function. In Fig. 12, a cube model is decomposed to cells with
spatially-varying anisotropy and density. Once again, the predicted
anisotropy and density are well captured, as can be observed in
exterior and cutaway views.

Comparison with the OVT method. We evaluate our OPD
method via a comparison with the OVT method [27]. Three mea-
sures of the cells Vi, including the Hessian variation, shape ratio
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Fig. 3. Influence of variables on the objective function, where f (x, y) = 100x2 + y2 ,
−1 ≤ x, y ≤ 1. (a) Random initialization of 1000 sites; (b) result obtained by
directly optimizing all site positions and weights, with EOPD = 1.273 × 10−3;
(c) result obtained by only optimizing site positions from the random initialization
in (a), with EOPD = 8.239×10−4; (d) result obtained by optimizing all site positions
and weights from the intermediate result in (c), with EOPD = 6.607 × 10−4; and
(e) plot of approximation error versus iteration number, obtained by updating
variables in different orders.

and modified area, are adopted here to evaluate the mesh quality
as follows:

(a) Hessian variation: maxx,y∈Vi∥Hess[f ](x) − Hess[f ](y)∥F ,
where Hess[f ](x) is the Hessian of function f (x) and ∥.∥F is
the Frobenius norm.

(b) Shape ratio:

maxx,y∈Vi

[√
(x− y)tHVi (x− y)

][
|Vi|

√
detHVi

]− 1
d

, where

HVi is the averaged Hessian of f within a cell Vi.

(c) Modified area:
(
ρd
Vi detHVi

) 1
d+2 |Vi|, where d = 2, 3, and ρVi

is the average density within a cell Vi.

Generally speaking, the cells of a high-quality tessellation have
similar Hessian variations, shape ratios and areas. Figs. 13–15
show a comparison of our OPD method with the OVT method
on generating meshes conforming to anisotropic metrics induced
by 2D/3D convex functions. From the tessellation results, we can
observe that our OPDmethod producesmeshes with visuallymore

Fig. 4. Overview of our OPD optimization algorithm.

Fig. 5. Comparison of new site insertion methods with different initializations.
(a) and (c) are results using a random insertion method for new sites; and (b) and
(d) are results using the PCA based new site insertion method. Top row: f (x, y) =
100x2+ y2,−1 ≤ x, y ≤ 1, with EOPD = 4.124× 10−4 (a) and EOPD = 8.492× 10−5
(b). Bottom row: f (x, y) = x2+y2,−1 ≤ x, y ≤ 1, with EOPD = 6.044×10−7 (c) and
EOPD = 6.095× 10−7 (d).

regular cells. Histograms display the distributions of the three
aforementioned measures on each resulting mesh, which indicate
that our OPD method achieves a better performance than the OVT
method. Histograms of Hessian variations in Figs. 13 and 15 are not
given as the Hessian is constant on each cell. The color-coded ap-
proximation errors in both L1 and L2 norms also reveal that ourOPD
method provides better approximation to the given functions.
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Fig. 6. Influence of global perturbation on site position optimization. (a) Result
using only local perturbation, EOPD = 7.396×10−5; and (b) result using both global
and local perturbations, EOPD = 7.115× 10−5 .

Fig. 7. f (x, y) = x4 + y4 + (x − 3)2 + (y − 3)2,−10 ≤ x, y ≤ 10 with
2,000 sites. (a) Result after position optimization; and (b) result of position–weight
optimization, taking the tessellation in (a) as input.

Fig. 8. Resulting tessellation (a) and piecewise linear fit (b) of a non-convex target
function f (x, y) = sin(π (x+ 0.5)) cos(πy), x2 + y2 ≤ 1 with 500 sites.

Fig. 9. Density control. Resulting tessellations for a non-convex target function
f (x, y) = x3 + y3,−1 ≤ x, y ≤ 1 with a constant density in (a) and a nonuniform
density function ρ(x, y) = 1.0/

(
(x2 + y2)2 + 0.001

)
in (b).

Fig. 10. Tessellation of sphere for a non-smooth target function f (x, y, z) =√
x2 + y2 + z2 with 800 sites.

Fig. 11. 3D optimal power diagrams with increasing anisotropy. (a) Isotropic;
(b) 2:1:1; and (c) 8:1:1.

Fig. 12. Exterior and cutaway views of tessellations for a non-convex target function
f (x, y, z) = x3 + y3 + z3,−1 ≤ x, y, z ≤ 1 with a constant density in (a) and a
nonuniform density function ρ(x, y, z) = 1.0/

(
(x2 + y2 + z2)2 + 0.001

)
in (b).

7. Conclusion

We present a cell complex generation framework using OPD,
achieving tessellations with well controlled local anisotropy and
density. Our OPD method extends the existing OVT method by
removing the convex restriction on the approximated function
and replacing tangent planeswith general planes as approximants.
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Fig. 13. Comparison of our OPDmethodwith the OVTmethod on a convex function
with a constant Hessian f (x, y) = 100x2 + y2,−1 ≤ x, y ≤ 1. (a–c) Results from
the OVTmethod; (d–f)results from our OPDmethod; and (g–h) histograms of shape
ratios and modified areas. (a, d) Resulting tessellations; (b, e) color-coded errors in
the L1 norm; and (c, f) color-coded errors in the L2 norm. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

A combined local–global optimization technique, coupled with
comprehensive initialization and perturbation schemes, is tailored
for solving the specific optimization problem. Experimental re-
sults demonstrate that our method is capable of generating more
diverse tessellations with expected density and anisotropy and
providing a better approximation to the given function than the
OVT method.

Limitation and future work. In practical applications, one may
desire to generatemeshes adapted to a given tensor field. However,
an arbitrarily prescribed tensor field is not the Hessian of any func-
tion in general. Hence, the aforementioned anisotropic technique
cannot be directly used for this situation. One promising solution
is to find a function whose Hessian provides the best fit to the
prescribed anisotropy using a fitting method. Compared with the
optimization method of computing OVT, our hybrid optimization
often suffers from thehigh computational cost, despite of successes
in finding optimal local minima. The running time of our OPD
method for each example is given in Table 1. As part of our future
work, we will focus on speeding up the optimization.

Although in this paper we only focus our research endeavors
on generating anisotropic cell complexes for function approx-
imation, potential applications of cell complex generation are
much broader. For example, shape functions defined over polyg-
onal/polyhedral elements are often desirable in finite element
analysis and isogeometry analysis. We plan to further refine our

Fig. 14. Comparison of our OPDmethodwith the OVTmethod on a convex function
with varying Hessian f (x, y) = x2 + 10−5y2 + y4,−1 ≤ x, y ≤ 1 with 2000 sites.
(a–c) Results from the OVT method; (d–f) results from our OPD method; and (g–h)
histograms of Hessian variations, shape ratios and modified areas. (a, d) Resulting
tessellations; (b, e) color-coded errors in the L1 norm; and (c, f) color-coded errors
in the L2 norm. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Fig. 15. Comparison of our OPD method with the OVT method in the 3D case
f (x, y, z) = x2 + y2 + 0.01z2,−1 ≤ x, y ≤ 1. (a, b) Result and cutaway view
from the OVT method; (d, e) result and cutaway view from our OPD method; and
(c, f) histograms of shape ratios and modified areas, respectively.
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Table 1
Statistics of running time.

Figure Site number Initialization (s) Position optimization (s) Position–weight optimization (s) Total time (s)

1(a) 50 0.1 1.6 2.4 4.1
1(b) 200 49 65 72 186
1(c) 800 32 18.8 17.6 68.4
7 2000 270 213 109 592
8 500 56 27.8 44.8 128.6
9 1000 57 59.7 43.3 160
10 800 780 246 1245 2271
11 500 860 414 283 1557
12(a) 2000 1731 3615 615 5961
12(b) 2000 1694 3521 354 5579
13 1000 63 67 23 153
14 2000 98 200 36 334
15 1000 598 1028 286 1912

algorithm by integrating more constraints on the geometry shape
of cells and apply it to analysis and simulation tasks.
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