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Abstract
Image triangulation aims to generate an optimal partition with triangular elements to represent the given image. One bottleneck
in ensuring approximation quality between the original image and a piecewise approximation over the triangulation is the
inaccurate alignment of straight edges to the curved features. In this paper, we propose a novel variational method called curved
optimal triangulation, where not all edges are straight segments, but may also be quadratic Bézier curves. The energy function is
defined as the total approximation error determined by vertex locations, connectivity and bending of edges. The gradient formulas
of this function are derived explicitly in closed form to optimize the energy function efficiently. We test our method on several
models to demonstrate its efficacy and ability in preserving features. We also explore its applications in the automatic generation
of stylization and Lowpoly images. With the same number of vertices, our curved optimal triangulation method generates more
accurate and visually pleasing results compared with previous methods that only use straight segments.
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1. Introduction

The geometric representation of bitmap images can be viewed as
a piecewise approximation defined over geometric objects to rep-
resent the original image as faithfully as possible. Given its advan-
tages, such as resolution independence, data compression and edit-
ing, geometric representation has attractedmuch attention in various
fields, including image approximation (e.g. [LL06, LA13, CXC14,
LG19]), vectorization (e.g. [XLY09, ZZW14, FLB17]) and the artist
community [Bit14, Bry17]. Although many other geometric repre-
sentations exist, e.g. the diffusion curve [OBW*08], the gradient
mesh [LHM09] and image triangulations [LG19], each has its way
and advantages in modelling the colour variation. Image triangula-
tion gains popularity as it can easily be used to create different art ef-
fects, such as stylization [LG19] and Lowpoly [GW16,MC17]. This
paper provides a new alternative for triangulating images by intro-
ducing curved edges to reconstruct colour variations more faithfully
and better capture features across the image space.

An image not always only contains straight features. To reduce
approximation error, triangulating an image usually requires dense
vertices and short segments along its curved features, which can be
easily observed from the results of existing methods (e.g. [LA13,

LG19]). This requirement can be mainly attributed to the weak abil-
ity of straight segments to capture curved features. For instance, the
zoomed-in detail in Figure 1(b) shows that some vertices are not
located on the feature curves.

Curved edges are much more competitive than straight edges in
preserving such features because of their flexible modelling ability
(Figure 1(d)). In this paper, we aim to improve the alignment be-
tween triangulation edges and image features by replacing straight
edges with quadratic Bézier curves. Specifically, each edge is as-
sociated with a quadratic Bézier curve whose first and last control
points are coincident with the end points of edges. We achieve this
curved feature alignment goal by adjusting the positions of vertices
and control points. This configuration allows us to place fewer ver-
tices along features to capture them efficiently, and we reconstruct
imagesmore accurately by further introducing vertices into other re-
gions with high approximation error. Figure 1 shows the benefits of
curved triangulation in preserving features and improving approxi-
mation quality.

Generating a curved triangulation that conforms to given math-
ematical curves has recently attracted much interest (e.g. [ADF14,
FP16, HSG*19, MC20]). These methods are mostly proposed for
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Figure 1: An input raster image (a) is represented as the optimal triangulation with straight (b) and curved (d) edges. The reconstructed
images are shown in (c) and (e). The zoomed-in details and RMSE values illustrate the benefits of curved triangulation in preserving features
and improving approximation quality.

Figure 2: Three types of elements to be optimized in this paper. The
red solid circles and blue solid segments/curves denote the vertices
and edges, respectively. (a) Vertex optimization; (b) edge flipping
and (c) optimization of control point (purple solid circle).

Figure 3: Notations used in Section 3.2. fkl : light yellow region,
fkr: light blue region, ṽiv j: green solid curve and ci j: purple solid
circle.

finite element methods (FEMs) and mainly focus on mesh quality
and preservation of given curves. By contrast, we focus on improv-
ing image approximation quality by introducing curved triangula-
tion. Our goal is to minimize the total approximation error between
the original image and the piecewise approximation over the trian-
gulation. We formulate this goal as an optimization task determined

by the vertex locations, connectivity and control point positions of
the triangulation in order for the curved optimal triangulation to cor-
respond to the minimum approximation error. Our contributions can
be summarized as follows:

1. By introducing curved edges, we propose the energy function
of curved optimal triangulation whose minimal result outper-
forms those triangulations with only straight segments in cap-
turing curved features and improving approximation quality.

2. We deduce explicitly the gradient formulas of the proposed en-
ergy function with respect to the positions of vertices and con-
trol points, thereby allowing us to optimize the energy function
efficiently.

3. We propose an optimization algorithm for searching the curved
optimal triangulation of given images, and for generating more
accurate and visually pleasing results compared with extant
methods. We also explore its applications in the automatic gen-
eration of stylization and hybrid Lowpoly images.
The paper is organized as follows: Section 2 briefly reviews
several related works. Section 3 describes the curved optimal
triangulation. Section 4 presents the generation algorithm and
Section 5 presents the experimental results and comparisons.
Section 6 concludes the paper.

2. Related Work

With a given number of vertices, our method generates curved tri-
angulation with high approximation quality, which is mainly related
to image approximation, image triangulation and curved meshing.

2.1. Image approximation

While many studies have examined image approximation, we only
focus on those methods that are based on geometric representations.
These methods usually find an optimal distribution of some geo-
metric objects to partition the original image based on the approx-
imation error. Triangulation [BE92] and Voronoi diagram [Aur91]
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Figure 4: Algorithm pipeline. (a) Input image; (b) detected features; (c–e) left: triangulation, right: reconstructed image from piecewise
approximations over respective triangulation. (c) RMSE = 13.604; (d) RMSE = 11.658 and (e) RMSE = 11.368.

Figure 5: Initialization comparison. Meshes have 120 vertices. (b) 232 faces, RMSE = 25.979; (c) RMSE = 7.781; (e) 227 faces, RMSE =
11.776; (f) RMSE = 3.369.

Figure 6: Constraint polygons (light yellow) to ensure non-
overlapping. Black arrows: gradient direction; green arrows: safety
step length.

are two commonly used structures for dividing the image domain.
We defer our discussion of image triangulation to Section 2.2. Mar-
tinez et al. [MMPRQ07] and Nivoliers and Lévy [NL13] proposed a
piecewise constant approximation of a given image over a Voronoi
diagram, but their methods differ in terms of optimization strate-
gies. The method proposed in Nivoliers and Lévy[NL13] was fur-
ther extended by Chen et al. [CXC14] to piecewise polynomial
approximation with arbitrary degrees, while Cao et al. [CXC*18]
adopted barycentric coordinates to construct the approximation.
They identified the optimal solution when the image features co-
incide with the edges of Voronoi cells, forming polylines along
these features, which also inevitably occurs in other geometric par-
titions with straight boundaries. Another example is that Bauchet
and Lafarge [BL18] generated polygons matching with image fea-
tures by progressively extending pre-detected line-segments until
they meet each other. However, most vectorization methods prefer
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Figure 7: Initialization with noises on vertex positions and connectivity. The underlying image in (a–h) is the original image. (a) Normal
initialization; (c) initialization with random connectivity; (e/g) initializations with random movements of 10- and 50-pixel width on vertices,
respectively; (b/d/f) the optimized meshes after 20 iterations of (a/c/e), respectively; (h) the optimized mesh after 50 iterations of (g).

Figure 8: The effect of different types of optimization on the results. (a) Input image; (b) the result generated by Algorithm 1 without vertex
optimization; (c) the result generated by replacing error-based edge flipping with Delaunay rule-based edge flipping in Algorithm 1; (d) the
result generated by Algorithm 1 without control point optimization; (e) the result generated by Algorithm 1; (f) the graphs of RMSE values of
optimizations (b–e), respectively. The initial meshes are all the same with 300 vertices, and polynomial degree = 0.

using curved geometries to align these features accurately (e.g.
the curves in Refs.[LL06, OBW*08, FLB17], gradient mesh in
Refs.[SLWS07, LHM09] and Bézier patches in Ref.[XLY09]). Pre-
cise alignment enables geometric objects to cover pixels without
jumped colours. Therefore, we replace the straight edges of trian-
gulation with quadratic Bézier curves to improve approximation
quality.

2.2. Image triangulation

Decomposing a raster image into triangles is critical to image ap-
proximation, extraction, compression, vectorization and the com-
munity of designers, such as Favreau et al. [FLBA20] proposed a
framework of Delaunay point processes to extract geometric struc-
tures from images. Data-dependent triangulation (DDT) [LUH07] is
one of the most important methods for triangulating images. Most
conventional DDT algorithms, including refinement [LA13], deci-
mation [DDFI05] and modification [LI06], assign a colour to each
vertex and reconstruct an image through interpolation over trian-
gles. These algorithms are piecewise linear approximations withC0

continuity at vertices and edges, hence exposing their weaknesses
in expressing image discontinuities. As a result, most of the ver-
tices are placed near both sides of the image features. To address
this drawback, Tu and Adams [TA13] used a wedge structure to
explicitly represent the discontinuities, whereas Lawonn and Gün-
ther [LG19] defined approximating polynomial dependently over
each triangle, hence allowing multiple values on a single vertex.
We extend the work of Lawonn and Günther[LG19] and similarly
transform the generation of image triangulation into a minimization

problem. The key difference between our work and theirs is that we
equip the edges of triangulation with control points to make them
curved and then deduce the explicit gradient formulas of vertices
and control points instead of following the approximate computa-
tion in Lawonn and Günther[LG19]. To the best of our knowledge,
only few studies have investigated curved triangulation for images.
Xia et al. [XLY09] produced intermediate Bézier patches served for
image vectorization, where they optimized Bézier edges for a pos-
itive Jacobian determinant of straight-to-curve mapping (i.e. non-
overlapping) and fitting to traced pixel-level paths. In this paper, we
provide a simpler andmore flexible alternative for generating curved
triangulation while focusing on improving reconstruction quality
with a given number of vertices.

2.3. Curved meshing

Generating meshes that conform to given curves or surfaces has at-
tracted much research attention given that curvilinear meshes can
provide better numerical accuracy and efficiency in FEMs [GR09,
ADF14, FP16, FAB*18, HSG*19, MC20, MC21]. For example,
Feng et al. [FAB*18] extended optimal Delaunay triangulation
[CX04] to curved meshing for higher-order basis functions. Most
of these methods care more about exact expression of given curves
and resultant mesh quality (e.g. large minimal angle), while we seek
a low approximation error between the piecewise approximation
over the triangulation and the original image. A basic requirement in
curved meshing is a positive Jacobian determinant, that is a regular
geometric map from a parametric triangle to physical ones, thereby
suggesting that no overlapping should be observed among curved
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Figure 9: Approximation by piecewise polynomials with different degrees. Meshes are with 400 vertices and 783 faces. (b) RMSE = 13.125;
(c) RMSE = 9.178 and (d) RMSE = 6.155.

Figure 10: Approximation quality against vertex number (polynomial degree = 0). (b) RMSE = 6.998; (c) RMSE = 5.710 and (d) RMSE =
5.314.

triangles. To ensure the intersection between curved triangles re-
mains empty in our meshes, we constrain the movements of ver-
tices and control points. We also perform a violation test for edge
flipping, similar to Mandad and Campen[MC20].

3. Curved Optimal Triangulation

In this section, we describe the core idea of our curved optimal tri-
angulation in detail. We initially define its energy function in Sec-
tion 3.1 and then deduce the derivatives with respect to the positions
of vertices and control points in Section 3.2. Given that they are pre-
sented for greyscale images, we extend all formulas of the curved
optimal triangulation to colour images in Section 3.3.

3.1. Energy function

Suppose that h : � → R is a given function defined over the 2D
domain �. We adopt triangulation T = (V,F ) to partition the do-

main, where V = {vi}ni=1, F = { fk}mk=1 denote sets of n vertices and
m faces, respectively. We construct piecewise approximation by
computing a best-fitting polynomial P∗

k with arbitrary degree by ap-
plying the least squares method over each triangular region fk, k =
1, . . . ,m, in order for the total approximation error between the
given function h and the piecewise approximation to be measurable
by

E (T ) =
m∑
k=1

∫
fk

∣∣h(x) − P∗
k (x)

∣∣2dx. (1)

The goal here is to minimize the error function and obtain an op-
timal triangulation. Given that triangulation T is determined by ver-
tices V and their connectivity E, optimizing V and E through mov-
ing vertices and flipping edges (Figures 2(a) and 2(b)) are the main
operations of existing triangulation generation methods.

We replace the straight edges of the triangulation with quadratic
Bézier curves. Imagine that each edge viv j of the triangulation is
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associated with a control point ci j (Figure 2(c)). With the two end
vertices vi, v j and the control point ci j, the straight edge is curved
to

xi j(t ) = (1 − t )2vi + 2t(1 − t )ci j + t2v j, t ∈ [0, 1], (2)

where t is the parameter.

The curved triangulation divides the domain � into a set of re-
gions, with each region bounded by three curves. We still notate
them as F . The partition is decided by three elements, namely, the
vertex locations, connectivity and positions of control points. We
then define our energy function as

E (V,E,C) =
m∑
k=1

∫
fk

∣∣h(x) − P∗
k (x)

∣∣2dx, (3)

whereC is the set of control points of all edges in the triangulation.
C also represents the key difference between our method and those
proposed in the literature. The curved optimal triangulation can be
obtained by minimizing the energy function through optimizing the
positions of vertices and control points, and flipping the edges iter-
atively (Figure 2).

Curved optimal triangulation is the global minimizer of the pro-
posed energy. However, the energy function determined by the ver-
tex positions and connectivity and control point positions is highly
non-linear and non-convex. In practice, one usually can only com-
pute a local minimizer of such a function. For simplicity, we will
still use the term ‘curved optimal triangulation’ to refer to a curved
triangulation given by a local minimizer of the proposed energy.

3.2. Gradient formulas

Simultaneously optimizing three types of elements is impractical.
A common solution is to update one type while fixing the others in
each iteration during the optimization. The gradient formulas for the
positions of vertices and control points are given as follows.

3.2.1. Gradient of vertex position

When the connectivity and control points of edges are kept un-
changed, the partition to domain � is affected by the positions of
vertices. To avoid degenerate triangulation, each vertex can only
move inside its one-ring neighbouring regions. Therefore, by ap-
plying the general Leibniz rule [Fla73], the gradient of Equation (3)
with respect to vertex vi can be derived as

∂E
∂vi

=
∑
k∈Fi

∫
fk

∂
∣∣h(x) − P∗

k (x)
∣∣2

∂vi
dx +

∑
j∈Ni

∫
ṽiv j

�(x)
∂x
∂vi

n(x)ds, (4)

where Fi is the indices set of the neighbouring faces of vi, and Ni de-
notes the indices set of its neighbouring vertices. Along the curved
edge from vi to v j, the regions on the left- and right-hand sides are
denoted by fkl and fkr, respectively. Furthermore, �(x) represents
the difference of approximation errors at point x over regions fkl and
fkr, i.e.

�(x) = ∣∣h(x) − P∗
kl (x)

∣∣2 − ∣∣h(x) − P∗
kr(x)

∣∣2.

For boundary vertex vi, fkl or fkr may be null. Therefore, the cor-
responding approximation error is set to 0. n(x) represents the unit
normal vector at point x outward fkl (see the notations in Figure 3).

The best-fitting polynomials {P∗
k (x)}mk=1 can be calculated imme-

diately by the least squares method after the triangulation is given.
According to the envelope theorem [Sil99], we have

∫
fk

∂
∣∣h(x) − P∗

k (x)
∣∣2

∂vi
dx = 0.

Let us focus on the second item of the right-hand side in Equation
(4). The point x on the curved edge viv j satisfies Equation (2). By
differentiating x with respect to vi and t, we obtain

∂xi j(t )
∂vi

= (1 − t )p
[
1 0
0 1

]
,

where p = 2, and

∂xi j(t )
∂t

= −2(1 − t )vi + (2 − 4t )ci j + 2tv j.

Moreover, the relationship between n(x) and ∂xi j(t )/∂t satisfies

n(x) = (∂xi j(t )/∂t )⊥∥∥∂xi j(t )/∂t
∥∥ ,

where (·)⊥ denotes a 90◦ rotation in the clockwise direction. By
integrating the above equations into Equation (4), the derivative of
the energy function with respect to vi is simplified as

∂E
∂vi

=
∑
j∈Ni

∫ 1

0
�(xi j(t ))(1 − t )p(∂xi j(t )/∂t )⊥dt. (5)

This equation is a general form that is suitable for vertices connected
by Bézier edges in any degree p, including straight edges (p = 1),
because we can simply replace Equation (2) with other Bézier equa-
tions.

3.2.2. Gradient of control point position

Since there can be no overlap between the curved triangles, the
movement of each control point should be restricted, too, the details
will be discussed in Section 4.3. Each control point only affects two
adjacent triangles of its associated edge, and has a local influence on
updating the triangulation. Similar to the above derivation, we for-
mulate the energy function with respect to control point ci j of edge
viv j as

∂E
∂ci j

=
∫
ṽiv j

�(x)
∂x
∂ci j

n(x)ds

=
∫ 1

0
�(xi j(t ))2t(1 − t )(∂xi j(t )/∂t )⊥dt. (6)

The notations here are similarly defined as those in Equation (5).
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3.3. Extension to colour images

Given that we aim to generate curved optimal triangulation for im-
ages, we reformulate the above equations with minor modifications.

Equation (3) can be applied directly to greyscale images. For a
colour image, each of its colour channels is treated as a function to
be approximated simultaneously over the curved triangulation. We
take RGB images as an example. The other modes can be handled
analogically in the same way. First, the energy function is modified
to

E (V,E,C) =
m∑
k=1

∫
fk

(
∣∣r(x) − R∗

k (x)
∣∣2 + ∣∣g(x) − G∗

k (x)
∣∣2 + ∣∣b(x) − B∗

k (x)
∣∣2)dx,(7)

where r(x), g(x) and b(x) denote the red, green and blue colours
in the input image, respectively, whereas R∗

k (x), G
∗
k (x) and B

∗
k (x)

denote the corresponding best-fitting polynomials over the curved
triangle region fk. Second, the gradient formulas can be derived in
the same fashion as that described in Section 3.2. Actually, the only
variable that needs to be modified here is �(x), that is

�(x) = (
∣∣r(x) − R∗

kl (x)
∣∣2 + ∣∣g(x) − G∗

kl (x)
∣∣2 + ∣∣b(x) − B∗

kl (x)
∣∣2)

−(
∣∣r(x) − R∗

kr (x)
∣∣2 + ∣∣g(x) − G∗

kr (x)
∣∣2 + ∣∣b(x) − B∗

kr (x)
∣∣2).

4. Algorithm

Although the energy function of curved optimal triangulation is
well-defined, how to quickly find its minimum presents a challenge
because of its non-linear property, especially for input images with
complicated contents. In this section, we develop an optimization
framework to generate satisfying results. The algorithm overview is
initially presented, then the details of initialization and optimization
are explained later.

4.1. Overview

We iteratively optimize the vertices, connectivity and control points
of the triangulation in sequence. We update the vertices and control
points using a gradient-based method and optimize connectivity by
performing edge flipping tests. Both the gradient-based method and
edge flipping tests are guided by the rules of energy decrease and
overlapping rejection. Additional details on the optimization can be
found in Section 4.3. The optimization of control points should be
performed after optimizing connectivity in each iteration, given that
aligning the edge to the feature is more important, otherwise opti-
mizing its control point is meaningless.

The optimization requires an initial triangulation, which can be
generated in various ways, such as the Delaunay triangulation of
random samples. A good initial guess can accelerate the conver-
gence of a non-linear optimization problem. In our case, the opti-
mal solution is that a subset of vertices and curved edges converge
to image features in the results, given that such triangulation divides
the image into several regions with similar colours, thereby leading
to a lower approximation error. Therefore, a better choice is to ini-
tialize triangulation based on the detected features of the input im-
age, which places part of the vertices along each feature curve. This

feature-assisted initialization has great advantage in quickly search-
ing for the minimum of the energy function. Additional details can
be found in Section 4.2.

With a good initialization, the optimization can generate
results with high approximation quality after a few itera-
tions. The pseudo-code of the algorithm is listed in Algo-
rithm 1, and Figure 4 shows an example of the pipeline.

4.2. Initialization

Error-based initialization is a common strategy, which starts from
a coarse triangulation and fine-tunes the results by iteratively in-
serting a new vertex into the triangle with maximum approximation
error [CXC14, XCC*18]. In this case, regardless of its number of
iterations, the optimization can easily get stuck in the local minima
for most testing images, especially for those features that are lo-
cated close to one another (Figures 5(b) and 5(c)). Therefore, this
initialization does not help much achieving minimum, given that
each vertex is not inserted under an optimal triangulation, thereby
gathering an excessive number of vertices around the same regions.
In addition, most vertices adhere to their nearby features in the lo-
cal optimum, and only few of them move to important features lo-
cated elsewhere.

Therefore, distributing a moderate number of vertices along each
feature curve is more reasonable. Although there have been many
triangulation generation methods, their results are not suitable as
initialization for our optimization. As mentioned, using meshes
with only straight edges to approximate images usually requires
dense vertices along curved features. However, the triangulation
with curved edges can represent those features by using fewer
vertices. Hence, more vertices can be placed elsewhere with high
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Figure 11: More results (meshes and reconstruction results) of our method. (a) 500 vertices, polynomial degree = 0; (b) 500 vertices, poly-
nomial degree = 1; (c) 1200 vertices, polynomial degree = 2.

Figure 12: Comparison with Lawonn and [LG19], polynomial de-
gree = 0.

Figure 13: Comparison with Li and Adams[LA13], 980 vertices,
polynomial degree = 1.

approximation errors, significantly increasing the approximation
quality of final results.

In this paper, we prefer to initialize triangulation with the assis-
tance of detecting features of the input image by the following four
steps:

Step 1 (Feature extraction).We extract image features (see Fig-
ure 5(d)) by using the edge drawing (ED)method [TA12]. Un-
like other feature detection methods (e.g. the Canny method
[Can86]), which may yield feature lines with non-uniform
thickness, the ED method produces one-pixel-wide pixel
paths, simplifying the following process.

Step 2 (Feature simplification).We simplify each pixel path to a
polyline with fewer vertices using the Douglas–Peucker al-
gorithm [DP73]. In particular, to simply a pixel path from pi
to pj, we start with a line segment pi p j. If the distance of the
farthest pixel on the path from this segment is smaller than a
threshold (5-pixel width), then we accept this simplification.

Step 3 (Constrained Delaunay triangulation).We generate a De-
launay triangulation by taking all the line segments generated
in Step 2 as constraints.

Step 4 (Triangulation updating).We alternately insert a vertex at
the circumcentre of the triangle with the largest area and ac-
cumulate approximation error until the vertex number budget
is reached.

Figure 5(e) illustrates a feature-assisted initialization, which sig-
nificantly improves approximation quality compared with error-
based initialization (Figure 5(b)). After the optimization with only
10 iterations, the final curved triangulation can precisely recover the
input image (Figure 5(f)).

4.3. Optimization

We construct the best approximating polynomials for all faces of
the triangulation by using the least squares method and update them
iteratively during the optimization. We also initialize control points
as middle points of all internal edges. Afterward, the triangulation
is ready to be optimized.

Vertices. The traditional gradient descent method updates all
variables with same step length. We choose to update vertices one
by one instead of moving them simultaneously to prevent degen-
eration. In other words, each vertex cannot be moved outside its
one-ring neighbouring regions. In this case, we give the step length
individually. Specifically, except for the four corners, each vertex vi
is updated as

vi = vi − α∗
i

∂E/∂vi
‖∂E/∂vi‖ ,
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Figure 14: Comparison of image stylizations with Lawonn and Günther [LG19]. Both triangulations have 300 vertices. (b) Textures from top
to bottom: cushion, lines and hatching; (f) zoomed-in details of (c–e) and (j) zoomed-in details of (g–i).

where α∗
i is the step length decided by the following two steps:

1. To avoid self-intersection in the triangulation, we introduce a
constraint polygon (the light yellow region in Figure 6(a)) for
vi to restrict its movement. As shown in Figure 6(a), the con-
straint polygon of vi is first set as the 1-ring neighbourhood of
vi (the grey region in Figure 6(a)), then in each adjacent trian-
gle �viv jvk, the constraint polygon is clipped by six lines v jci j,
v jc jk, v jcki, vkci j, vkc jk and vkcki, and the part on the same side
of the lines as vi is retained. From the construction of the con-
straint polygon, we know that the vertex vi stays on the same
side of the six clipping lines after the optimization, which pre-
vents overlaps between the control triangles �viv jci j, �v jvkc jk
and �vkvicki. Thus we guarantee that there is no intersection
between all adjacent curved edges of vi except the end points.

2. Along the direction −(∂E/∂vi)/‖∂E/∂vi‖, the safety length αi
(green arrow in Figure 6(a)) is calculated. We then try to update
vi with α∗

i = 0.2αi. If the energy decreases, then we accept the
step length. Otherwise, we scale α∗

i by 0.2 and try again. For
better efficiency, we limit the maximum search count to 5 by
default. Due to approximate integration involved in our compu-
tation, we consider the failure of the line search as a numerical
issue. And we heuristically set α∗

i to 0.2-pixel width when line
search fails to prevent getting stuck at a bad local minimum,
which enables us to obtain a better result in the next iteration.

For boundary vertices, we project their gradients to boundaries to
ensure that the triangulation completely covers the image domain
after moving them. And for an interior vertex, if there exists an ad-
jacent triangle, one of whose interior angles is opposite to a bound-
ary edge and is greater than 175◦, then it will be handled as a new
boundary vertex.

Connectivity. We take the commonly used operation (i.e. edge
flipping) to optimize connectivity based on error decrease. Each
internal edge vavc is adjacent to two curved triangles �vavbvc
and �vavcvd . We flip the curved edge vavc to the straight edge
vbvd . To prevent overlapping, segment vbvd cannot intersect with
any control segment of the neighbouring edges of vavc. If so, and
when the approximation error is reduced after the flipping, i.e.

Figure 15: Comparison of Lowpoly generation with Gai and Wang
[GW16]. (a) Result of Gai and Wang [GW16]; (b) our result gener-
ated by Algorithm 1; (c) our result generated by Algorithm 1 without
control points optimization of normal edges.

Figure 16: Comparison of Lowpoly generation with Ma and Chen
[MC17]. (a) Result of Ma and Chen [MC17]; (b) our result gener-
ated by Algorithm 1; (c) our result generated by Algorithm 1 without
control points optimization of normal edges.

E ({�vavbvc, �vavcvd}) > E ({�vbvcvd, �vbvdva}), then the flip-
ping is accepted, and the control point of the new edge is reset to
the middle point of its two end vertices.
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Figure 17: Piecewise quadratic approximation results of an image with many subtle features. The eyes of argali in (c) are extremely distorted
due to the insufficient number of samples.

Control points. Similar to vertex updating, each control point ci j
associated with internal edge viv j is updated as

ci j = ci j − β∗
i j

∂E/∂ci j
‖∂E/∂ci j‖ ,

where β∗
i j means its step length that is searched in the same way as

that in the vertices optimization. Differently, its constraint polygon
is obtained by clipping the quadrilateral ♦vivuv jvk with two lines
v jc jk and vicki in each adjacent triangle �viv jvk (see Figure 6(b)).

Terminating conditions. Users can provide two terminating con-
ditions for the optimization, one of which is the maximum iteration
number Iter, and the other is an approximation quality metric, such
as root mean squared error (RMSE). These conditions are set to 10
and 1.0 by default, respectively. The algorithm terminates when the
iteration exceeds Iter or when the RMSE is below a given threshold.
Benefiting from the feature-assisted initialization, the optimization
can generate satisfactory results in a few iterations.

5. Results and Applications

In this section, we demonstrate the effectiveness of our curved op-
timal triangulation method through several experiments and com-
parisons with other methods, and then explore its applications in
the automatic generation of stylization and hybrid Lowpoly images.
The polynomial bases {1, x, y, xy, x2, y2}, {1, x, y} and {1} are used
for piecewise quadratic, linear and constant approximations, respec-
tively. We implement the algorithm using C++ and discretize each
curved edge to at least eight segments for integral computations,
such as approximating polynomials and gradients. We use the Tri-
angle library [She96] to generate constrained Delaunay triangula-
tion in the initialization. All results are obtained using a laptop with
a 1.6-GHz Intel Core I5 processor and 16-GB RAM. We tested our
method for all examples in both Lab and RGB colour spaces and ob-
tained very similar results. For simplicity, we only show the results
obtained in the RGB colour space.

5.1. Results and comparisons

We use RMSE to quantify approximation quality. RMSE measures
the distance between the input image and piecewise approximations

over the triangulation and can be calculated as
√E (T )/(W × H ),

whereW and H are image width and height, respectively.

The curved edges of each final triangulation appear anywhere in
most examples because we do not distinguish whether or not these
edges are related to the features. The control points of normal edges
can be optimized earlier than those of edges relating to the features.
However, according to user requirements, we can tag edges if they
are related to the features in the initialization (i.e. feature edges and
normal edges) and either skip or continue optimizing the control
points of normal edges.

We first show the importance of the initial triangulation by in-
troducing some noises on vertex positions and connectivity in the
initialization stage, see Figure 7. Compared to Figure 7(a,b), the re-
sults of Figure 7(c,d) indicate that random connectivity changes on
the initial mesh has a slight influence on the final result, since we
adopt the error-based edge flipping during the optimization. In con-
trast, the initial vertex positions have a greater impact on the final
approximation error. Our optimization is capable to deal with slight
deviations of initial vertex positions from image features, see Fig-
ure 7(e,f), but fails to obtain a satisfactory triangulation even after
many iterations when initial vertices deviate heavily from the fea-
tures, see Figure 7(g,h).

We also test the influences of the three operations, i.e. vertex
move, control point move and edge flipping, on optimization re-
sults. From the same initial triangulation, Figure 8(b,d) is generated
by Algorithm 1 without optimization of vertices and control points,
respectively, while Figure 8(c) is obtained by replacing the error-
based flipping with Delaunay-based flipping. All the three opera-
tions have a positive effect on the improvement of approximation
quality, which can be shown by RMSE during the iterations. The
vertex move plays a significant role for the optimization. As shown
in Figure 8(f), RMSE drops slowest after disabling the optimization
of vertices.

Figure 9 shows an example where the original image is approxi-
mated using piecewise polynomials with different degrees. The out-
put triangulations have 400 vertices (about 0.15% sample rate) and
783 faces. From the visual effect and RMSE values of the recon-
struction results, the approximation quality can be significantly im-
proved by using a high-order polynomial basis. Although the colour
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of the original image changes dramatically, our linear approxima-
tion recovers the colour variations well enough (Figure 9(c)).

Figure 10 shows the influence of vertex number on the results.
Apparently, the triangulation with more vertices increases the ap-
proximation quality, because the image can be divided into more
regions and approximated more accurately over each region. How-
ever, the speed of such increase gradually decreases after all image
features are captured well enough by the curved triangulation (Fig-
ures 10(c) and 10(d)), where the contribution of 100 new vertices is
less than 0.4 RMSE. More of our results can be found in Figure 11.

Figures 1, 12 and 13 compare the triangulations with curved and
straight edges. The triangulation in Figure 1(b) is generated by the
proposed algorithm without control points optimization, hence re-
sulting in several vertices deviating from the features, even though
they are initially sampled from the detected features. By contrast,
the optimizations of vertices and control points positively affect one
another in our curved triangulation (the zoomed-in details in the fig-
ure). We also compare our approach with other state-of-the-art tri-
angulation generation methods. For instance, Figure 12 compares
our approach with Lawonn and Günther[LG19]. The main differ-
ence between their energy function and ours is the control points,
and their optimization framework iteratively inserts one vertex and
optimizes all of them, which requires many iterations. Our result
looks more pleasant than that of Lawonn and Günther[LG19], be-
cause we recover the curved features in large quantities, such as the
wrist and chin of the baby as shown in the figure. Meanwhile, Fig-
ure 13 compares our approach with Li and Adams[LA13], and also
demonstrates the great advantage of our curved optimal triangula-
tion in image representation.

5.2. Stylization

The demand for triangulating images is increasing in designer and
artist communities [Bit14, Bry17]. We demonstrate the applications
of our method on image stylization in this section and on hybrid
Lowpoly generation in the following section. For the former, we
directly follow the concept of Lawonn and Günther[LG19] and ap-
ply stylization texture on each curved triangular region. We assign
the texture coordinates of the vertices and control points of a tar-
get region in two ways. First, we set a base hexagon in the texture
domain and copy its coordinates to the vertices and control points
of the target region, which is used for the top texture shown in Fig-
ure 14(b). Second, we scale the bounding box of the region to the
texture domain, which is used for middle and bottom textures shown
in Figure 14(b). We also allow users to provide multiple patterns in
a single texture to simulate changes in colour brightness, which is
achieved via a proper selection of texture coordinates.

In Figure 14, we generate three stylization images using the given
textures (Figure 14(b)), cushion, lines and hatching [PHWF01], re-
spectively, and compare our results (Figure 14(g–i)) with those of
Lawonn and Günther[LG19] (Figure 14(c–e)). Their zoomed-in de-
tails can be found in Figures 14(f) and 14(j), respectively. We set
the same texture coordinates for the results using the same texture
to eliminate the influence of texture coordinates. Therefore, the re-
sults in Figure 14(c–e) may differ from that of the original version
of Lawonn and Günther[LG19]. Our results are more faithful to

the curved objects in original image, see the eyebrow and hat for
instance.

5.3. Hybrid lowpoly

Several methods focus on the automatic generation of Lowpoly im-
ages, such as Gai and Wang[GW16] and Ma and Chen [MC17]. A
conventional Lowpoly image triangulate with only straight edges
and fills constant colour in each triangle for the given image. How-
ever, artifacts may be generated due to the inaccurate representation
of the boundaries of curved objects (see the petals in Figure 16(a)
for example).

We provide users an alternative approach for generating hybird
Lowpoly images represented by curved triangulation. The degree of
approximating polynomials is set to 0 in this application. We gen-
erate two versions of our results shown in Figsures 15 and 16, one
generated by Algorithm 1 and the other generated by Algorithm 1
without control points optimization of normal edges.

Figure 15 compares our results with that of Gai and Wang
[GW16], who initialized constrained Delaunay triangulation with
the aid of features detection, too, but optimized non-critical ver-
tices using the centroidal Voronoi tessellation method [DFG99,
LWL*09], which leads to more uniform triangles in their Lowpoly
result (Figure 15(a)). By contrast, we focus on approximation qual-
ity, and our resultant Lowpoly images are closer to the input (Fig-
ure 15(b,c)). Ma and Chen [MC17] developed an interactive system
for Lowpoly rendering, and one of their results is shown in Fig-
ure 16(a). They achieved triangulation by using an adaptive thin-
ning method, which tends to generate small thin and long triangles
around the image features. Our results shown in Figure 16(b,c) have
clearer and more natural image features, such as petal boundaries,
compared with those of Ma and Chen[MC17]. As both Gai and
Wang [GW16] and Ma and Chen [MC17] did not report the ver-
tex number of their resultant triangulations, we only present here
the similar results to theirs for comparison.

5.4. Timing statistics

The proposed algorithm usually runs in a few seconds, depending
on the image size, amount of vertices and iteration number. Having
more image pixels, vertices and iterations usually requires a longer
running time. A high-order polynomial basis also significantly af-
fects the efficiency, given that a higher-dimensional linear system
needs to be solved in each region of the triangulation if the polyno-
mial degree is high. The running times of most examples presented
in this paper are listed in Table 1, where the columns represent the
figure index, image size, degree of approximating polynomials, ver-
tex number, iteration number and time in seconds, respectively.

Our curved triangulation-based vector graphics can be efficiently
rendered using a GPU. In particular, we create a shader programme
for all curved triangles and upload the coefficients of their approxi-
mating polynomials to the fragment shader. The rendering can reach
above 52 frames per second for all examples in the paper, making
the rendering real-time.
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Table 1: Statistics of running time.

Fig. W × H Degree #Vertices #Iter Time(s)

1 500 × 415 1 200 10 2.9
4 300 × 710 1 300 10 3.4
5 1024 × 1024 0 120 10 3.7
7(b/d/f) 800 × 800 0 200 20 4.1
7(h) 800 × 800 0 200 50 8.8
8 367 × 550 0 300 20 3.1
9(b) 560 × 470 0 400 15 2.8
9(c) 560 × 470 1 400 15 5.5
9(d) 560 × 470 2 400 15 9.6
10(b) 640 × 1136 0 200 12 3.5
10(c) 640 × 1136 0 300 12 3.9
10(d) 640 × 1136 0 400 12 4.1
11(a) 2025 × 1195 0 500 15 9.2
11(b) 530 × 780 1 500 15 7.5
11(c) 2048 × 1152 2 1200 15 42.6
12(b) 1280 × 720 0 738 10 4.4
13(b) 1024 × 768 1 980 10 6.8
14 512 × 325 0 300 20 3.8
15(b) 600 × 800 0 600 10 4.1
16(b) 492 × 656 0 600 10 2.6
17(c) 640 × 640 2 300 15 12.6
17(d) 640 × 640 2 3000 15 38.2

6. Conclusions and future work

We propose a curved optimal triangulation corresponding to the
minimal of the energy function (Equation (3)). We introduce control
points for triangulation edges as an important factor for partition-
ing a given image. We also deduce explicit gradient formulas for
the positions of vertices (Equation (5)) and control points (Equation
(6)) that enable us to search for the minimum of the energy func-
tion efficiently. We develop a generation algorithm of curved opti-
mal triangulation under the guidance of energy decrease and non-
overlapping. To make the optimization start from a good point, we
use the results of features detection for the initialization.We demon-
strate the effectiveness of our proposed algorithm through several
experiments and through comparisons with other methods and
applications.

Limitations and future work. The curved optimal triangulation
captures image features piece by piece, hence the continuity at the
joint point (i.e. vertex) between curved edges is onlyC0, which may
be unacceptable for some applications that require high continuities.
A promising solution to this problem is to add more constraints on
the control points, such as the collineation of a vertex and the two
control points of its neighbouring feature edges, which wewill leave
for a future work. Furthermore, although our method is robust, if
the input image contains many subtle features (e.g. grassland and
feather), then a larger number of vertices is needed to achieve a sat-
isfactory reconstruction (see Figure 17 for an example). How to ini-
tialize triangulation based on the priority of detected features can
be considered in future studies. It should be pointed out that the
curved triangulation results are obtained with the measure of colour
difference between pixels in this paper, and we are also interested
in investigating the proposed method with other perceptual metrics.
Finally, another exploration direction is to improve the regularity of

curved triangles, which directly correlates to the aesthetic beauty of
the final result.
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