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a b s t r a c t

The computation of power diagrams (or weighted Voronoi diagrams) is a fundamental task in compu-
tational geometry and computer graphics. To accomplish the computation, we provide a different way
from the existing ones for lifting the weighted seeds to a set of points in the space of one dimension
higher, then the power cells can be directly obtained by computing the intersections of the Voronoi
cells of these lifting points and the original space. This property enables us to apply the method based
on the k-nearest neighbors query to the generation of power diagrams. Each power cell is obtained
by sequentially clipping the input domain using the bisectors between its seed and the k-nearest
neighbors. Experimental results demonstrate that our method outperforms the state-of-the-art one
based on regular triangulation in terms of efficiency for general cases in the 2D and 3D spaces.

© 2023 Elsevier Ltd. All rights reserved.
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1. Introduction

A Voronoi diagram divides the space into regions composed
f points closest to one of a set of points (referred to as seeds).
oronoi diagram is one of the most important geometric struc-
ures for region partition in computational geometry and com-
uter graphics [1]. It has been extensively generalized using
ifferent metrics other than the Euclidean distance or replacing
oints with other geometric objects [2–6]. The power diagram [2]
or weighted Voronoi diagram) is one of the generalizations, with
wide range of applications, including sampling [7,8], adap-

ive remeshing [9,10], mesh generation [11,12], superpixels seg-
entation [13,14], and simulation [15,16]. Hence, the compu-

ation of power diagrams is a fundamental task, and improv-
ng its efficiency has considerable importance for downstream
pplications.
The additional degree of freedom makes the power diagram

ore complicated than the Voronoi diagram given that each seed
s attached a real number, called weight, posing a challenge to its
fficient computation. Only few methods are available for gener-
ting power diagrams of general cases. Aurenhammer 1987 [2]
ntroduced an algorithm that uses a convex hull in a higher
imensional space to construct power diagrams. A more common
pproach is based on the duality between the power diagram
nd weighted Delaunay triangulation (or regular triangulation,
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RT) [17], and there have been robust and high-quality implemen-
tations, such as the computational geometry algorithms library
(CGAL) [18]. Compared with an abundant number of studies
on the computation of Voronoi diagrams in the literature, e.g.,
[19–29], the research on the computation of power diagrams lags
far behind.

Several works have attempted to extend Voronoi generation
methods to power diagram computation, such as the extension
of the k-nearest neighbors (kNN) based method [16,30], also
eferred to meshless method. Based on the observation that each
oronoi cell is the intersection of half-spaces between the corre-
ponding seed and all the other seeds, the kNN based method [26,
8,31] sorts the bisectors associated with that seed in ascending
rder according to its distance to the other seeds, and then uses
hese bisectors to clip the given domain to produce its Voronoi
ell. The clipping procedure can be terminated in advance once
he distance from the seed to a bisector is greater than the
aximum distance from the seed to the cell. Zhai et al. 2020 [16]
nd Basselin et al. 2021 [30] applied a similar strategy in the
omputation of power diagrams. However, their extensions have
strong precondition that the weights of adjacent seeds have

lose values, which evidently cannot be used for general cases.
Directly applying the kNN based method to the computation

f power diagrams is inappropriate because the distance metric of
ower diagrams is not additive in the weight dimension, resulting
n an inefficient sorting of the distances from a weighted seed
o the bisectors. It has been proved that any power diagram
ctually corresponds to a Voronoi diagram in a higher dimen-
ional space [2,32]. The weighted seeds can be lifted to a set of

bjects in a higher dimensional space, which are then used for
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Fig. 1. Power diagrams on various domains (2D polygon, surface mesh and 3D volume, respectively) generated by our method. The seeds with positive and negative
weights are rendered as red and blue disks/balls, respectively, and the magnitude of weight is proportional to the size of corresponding disk/ball.
F

c

the computation of power cells. In the Observation 7 of [33], Lévy
presented a lifting way that the seed weight can be transformed
as a new coordinate of the seed location, making the Voronoi
generation methods directly applied to the computation of power
diagrams.

In this paper, we further provide a variant of the lifting way
n [33], the weighted seeds are mapped to a set of higher dimen-
ional points, each of them has a twin point. Based on this, the
ower cells can be quickly obtained by computing the intersec-
ions of the Voronoi cells of these lifting points and the original
pace. And we develop an efficient method based on the kNN
uery to accomplish the computation. Our specific contributions
an be summarized as follows:

• We provide a variant for lifting the weighted seeds to a
set of points in a higher dimensional space, and propose
an efficient method for power diagram generation based
on the kNN query, which outperforms the state-of-the-art
method based on regular triangulation in terms of efficiency
for general cases in the 2D and 3D spaces.

The remainder of this paper is organized as follows: Section 2
eviews the computation methods of Voronoi and power dia-
rams. Section 3 introduces the lifting theory for weighted seeds.
ection 4 proposes the kNN based method for generating power
iagrams. Section 5 provides an acceleration technique for the
roposed method. Section 6 presents the experimental results
nd applications. Section 7 concludes the paper.

. Related work

.1. Computation of Voronoi diagrams

Many robust and efficient methods for generating Voronoi
iagrams have been proposed in the recent decades [19–29,34–
6]. The divide-and-conquer method [19] recursively splits the
iven seeds into two halves and merges their Voronoi diagrams.
rown 1979 [21] transformed the original seeds to a higher
imensional space and computed their convex hull to generate
oronoi diagrams. The sweep-line method [22] uses line scanning
o find the Voronoi corners and their connection. These meth-
ds only apply to planar Voronoi diagram generation because
heir key steps are so complex that they are challenging to im-
lement in high-dimensional space. Similarly, the GPU-assisted
oronoi calculation methods are also limited to low-dimensional
pace [34–36].
The more popular methods for computing the Voronoi di-

gram is based on the duality of Voronoi and Delaunay tes-
ellations. The main focus of these methods is the fast con-

truction of Delaunay triangulation, which can be accomplished
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by various algorithms, including the Lawson algorithm [37], the
Bowyer–Watson algorithm [38,39], the divide-and-conquer al-
gorithm [40] and the incremental algorithm [41]. Parallel con-
struction methods have also been developed to achieve higher
efficiency (e.g., [42,43]).

In recent years, the meshless Voronoi generation methods
have attracted remarkable attention [16,26,28,30,31]. This
method has a great advantage in performance over the Delaunay
triangulation-based method because it only relies on the seed
locations. It performs effectively, especially when the seeds are
uniform [28]. Once the neighboring relationship between seeds is
established, the computation of each Voronoi cell is independent,
hence is suitable for parallel implementation on GPUs [28,29].

2.2. Computation of power diagrams

The computation of power diagrams attracts much less at-
tention than the Voronoi generation. Aurenhammer 1987 [2]
presented an algorithm for the computation of d-dimensional
power diagram using a (d+1)-dimensional convex hull. Nocaj and
Brandes 2012 [44] reduced this algorithm to three steps for only
the 2D cases. Zheng et al. 2019 [45] extended the jump flooding
algorithm to compute planar power diagrams with the assistance
of GPUs. In practice, the method of constructing a regular trian-
gulation [17] and then calculating its duality to obtain the power
diagram is more common. Zhai et al. 2020 [16] and Basselin et al.
2021 [30] have adopted the kNN based method to generate power
diagrams. However, their methods are only applicable when the
weights of the adjacent seeds are close to each other. In this
paper, we develop an efficient method for the computation of
general power diagrams by using a KD-tree.

3. From power diagram to restricted Voronoi diagram

Given n seeds {vi}ni=1 in the d-dimensional space Rd, each of
which is assigned with a weight wi, i = 1, . . . , n, the power
diagram divides the space Rd into a set of cells {Ωi}

n
i=1 as follows

Ωi = {x ∈ Rd
|D(x, vi, wi) ≤ D(x, vj, wj),∀j ̸= i}, (1)

where D(x, v, w) = ∥x − v∥2 − w is the distance function, see
ig. 2(a).
It has been shown in [2] that a d-dimensional power diagram

an be constructed by lifting it to (d+1)-dimensional space. Specif-
ically, each weighted seed (vi, wi) is mapped to a hyperplane hi
in the space Rd+1, where

h : z = 2v · x+ w − ∥v ∥2, x ∈ Rd (2)
i i i i
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Fig. 2. Illustration of the equivalence between a power diagram and a higher dimensional restricted Voronoi diagram by a 2D example. The weighted seeds are
hown as black dots and brown disks. (a) The power cell of seed vi (light green) is obtained by clipping the domain (light blue) using the nearest bisectors (purple
ine). (b) In [2], the weighted seeds are mapped to a set of planes {hj}, and the intersection of the halfspaces above {hj} is a polyhedron, whose facets projected
ack to the original space are the power cells. (c) We propose a different lifting way. The weighted seeds are lifted as 3D points {pj} (green dots), and the power
ell of seed vi can be directly obtained by computing the intersection of the 3D Voronoi cell of pi and the 2D domain.
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nd z is the (d+1)-th coordinate. The intersection Z+ of the
alfspaces above h1, . . . , hn is a (d+1)-polyhedron, whose facets
rojected back to Rd are the power cells of the original seeds,
ee Fig. 2(b). Please refer to [2] for more details.
The above lifting from Rd to Rd+1 for the weighted seeds does

ot allow us to directly apply Voronoi generation methods to the
omputation of power diagrams. We introduce a variant of the
ifting way presented in [33] in the rest of this section.

The problem that D(x, v, w) is not additive in the weight
imension can be solved by introducing a parameter η ≥ wmax,
here

max = max{w1, w2, . . . , wn} (3)

s the maximum weight. The following inequality relation re-
ains unchanged by introducing the parameter η into the dis-

ance function Dη(x, v, w) = ∥x− v∥2 + η − w:

η(x, vi, wi) ≤ Dη(x, vj, wj),∀j ̸= i. (4)

n other words, the partition controlled by the above modified
istance function remains the same as the original power dia-
ram. As η − wi ≥ 0,∀i, the modified distance function can be
urther treated as follows:

η(x, v, w) = ∥x− v∥2 + (0−±
√

η − w)2 = ∥y− p∥2, (5)

here y = (x, 0) and p = (v,±
√

η − w). p ∈ Rd+1 is referred
to as the lifting point of v ∈ Rd. Eq. (5) is actually the squared
uclidean distance of two points in the (d+1)-dimensional space
d+1. Therefore, the power cell is equally defined by the follow-

ng:

i = {x ∈ Rd
| ∥y− pi∥

2
≤ ∥y− pj∥

2,∀j ̸= i}, (6)

hich is the restriction of Voronoi cell of pi in the (d+1) dimen-
ion space to Rd, as shown in Fig. 2(c). A hidden seed dominates
null region if the intersection between the Voronoi cell of the
orresponding lifting point and Rd is empty.
The two options of lifting point for each seed produce the same

esult because Rd intersects all the possible bisectors of pi and
j,∀i ̸= j, at the same location. For simplicity, we set all lifting
oints as {pi = (vi,

√
η − wi)}ni=1. The parameter η implies how

ar the lifting points are from the space Rd. The lower bound of
cannot be determined until the weights are provided.
Therefore, we can directly obtain the power diagram for any

eighted seeds by computing a higher dimensional restricted
oronoi diagram. The Voronoi generation methods are applicable
o the computation of power diagrams given this property.
249
4. Meshless power diagrams

In practical applications, it is usually desired to compute the
power cells inside a given bounded domain, i.e., the clipped or
restricted power diagrams. Equipped with the above theory, we
develop a method based on the kNN query to compute the power
diagrams on different given domains in this section. The method
is referred to meshless power diagrams, since we do not construct
any triangulations. We initially describe the method in detail, and
then discuss the choice of parameters.

4.1. Overview

Consider a domain M = {τ } (2D polygons, surface mesh
r 3D polytopes) and a set of weighted seeds {(vi, wi)}ni=1. The
ntersection of the power cells of {(vi, wi)}ni=1 and M can be
omputed by the following steps, refer to the pseudo-code in
lgorithm 1.
Lifting. The given weighted seeds {(vi, wi)}ni=1 are lifted to the

igher dimensional space as pi = (vi,
√

η − wi), i = 1, . . . , n.
The lifting points will be treated as the Voronoi seeds to generate
bisectors for the subsequent clipping step. Note that the value of η
highly affects the computation efficiency. We defer the discussion
in Section 4.3.

KD-tree construction. The neighborhood search between lift-
ing points is required in the next step. The KD-tree is a mature
and widely used data structure to organize the given dataset and
fast query the nearest neighbors of the target point. Thus, we
construct a KD-tree for the lifting points once they have been
generated.

Clipping. The bisector of points pi and pj is the plane satisfying
pj − pi)T · (y − (pj + pi)/2) = 0,∀i ̸= j. We compute the
ntersection of any region and the half-space bounded by the
isector using Sutherland Hodgman clipping algorithm [46]. To
btain the restricted Voronoi cell Ωi of pi, we initially set Ωi =

, and sort the bisectors between pi and all the other lifting
oints in ascending order according to their distances from pi, and
hen clip Ωi gradually by these bisectors in sequence. In addition,
orting the bisectors associated with pi is equivalent to sorting
he lifting points except for pi, which can be achieved efficiently
sing the KD-tree. See more details in Section 4.2.

.2. Clipping

A bisector has a contribution to the final cell if the result of its
lipping is retained. There are only a few nearest bisectors that
ontribute to the cell result. Sorting all the lifting points at once is
nnecessary because the clipping procedure can be terminated in
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Fig. 3. The influence of η on the computation efficiency. For all cases, the larger η results in more average clipping number of Voronoi cells and the running time.
Thus, we suggest η = wmax for the kNN based computation of power diagrams.
Algorithm 1 Meshless Power Diagram

Input: domain M = {τ }, weighted seeds {(vi, wi)}ni=1;
utput: power diagram {Ωi}

n
i=1;

1: find the maximum weight wmax and set η;
2: generate lifting points {pi = (vi,

√
η − wi)}ni=1;

3: build a KD-tree of {pi}
n
i=1;

4: set stack S ← ∅;
5: for each region τ of M do
6: push the nearest lifting point of the centroid of τ into S;
7: while S not empty do
8: pi ← S.top(), S.pop();
9: reset τ ;
0: calculate the farthest distance Dmax from τ to pi;
1: k← initial number of nearest neighbors;

12: find indices N of k nearest lifting points of pi;
3: j← 0;
4: while Dmax > ∥pN [j] − pi∥/2 do
5: clip τ using the bisector of pi and pN [j];
6: update Dmax, j← j+ 1;
7: if j ≡ k then
8: k← k× 2 and enlarge N ;
9: end if
0: end while
1: append final τ to Ωi;
2: push unvisited neighbors’ indices of pi contributed to

final τ to S;
3: end while
4: end for

advance if it satisfies the condition that the farthest distance from
pi to Ωi is smaller than half of the distance from pi to its neighbor.
herefore, it is reasonable to set up a dynamic container, to which
e place a small number of nearest neighbors of pi initially, and
hen enlarge it until the clipping procedure terminates.

The process to compute Ωi is as follows. We denote L as the
nitial number of neighbors, and get L neighbors for pi from the
D-tree. Then we visit the neighbors one by one and use the
isector between pi and its neighbor to clip the domain. Once the
nd of the neighbors list is reached, we enlarge the number of
eighbors twice and update the neighbors list from the KD-tree,
250
as shown in the step 18 in Algorithm 1. When the termination
condition is met, Ωi is obtained. An appropriate value of L can
reduce the times of neighborhood searches, thereby improving
the efficiency, see more details in Section 4.4.

In practice, the input domain M is usually assembled by a set
of smaller region elements (polygons in 2D and surface mesh,
polytopes in 3D). Each Voronoi cell comprises parts of only a
few nearest regions of the corresponding lifting point. Hence,
testing whether all the regions intersect with each Voronoi cell is
unnecessary. We visit each region and divide it using the bisectors
between its nearest lifting points. Specifically, we identify the
nearest lifting point pi of the centroid of the given region τ , and
use the k-nearest bisectors of pi to clip it. Because τ is bounded
and we enlarge the range of seed neighbors if the termination
condition of clippings is not met (see step 18 in Algorithm 1), the
clipped τ must be an accurate result, which is finally appended to
Ωi. The neighbors of pi that contributed to the final τ are certainly
the seeds whose Voronoi cell intersects with the original τ . We
should compute their intersections further. Lastly, each power
cell Ωi consists of a set of small clipped regions, which is an
accurate result, and no regions are missed.

4.3. Setting of η

As mentioned above, η controls the distance from the lifting
points to the domain M. Different values of η result in the same
region partition. However, a larger η moves the lifting points
further away from the domain, leading to a larger maximum
distance from the lifting point to its restricted Voronoi cell. There-
fore, the termination condition of the clipping procedure becomes
more difficult to satisfy for each Voronoi cell, i.e., more clipping
tests are required.

A comparison of different η values on the computation effi-
ciency is shown in Fig. 3. The input domains are a unit disk, a
sphere-shaped triangular mesh, and a tetrahedralized ball. The
weighted seeds are randomly generated with weights in the
range of [−0.01, 0.01]. With the growth of η (1 ∼ 10 × wmax),
the average clipping number of Voronoi cells and the running
time increase dramatically, as shown in the orange bars and pink
curves in Fig. 3, respectively. Therefore, we suggest a minimal
value of η = w for the computation of power diagrams.
max
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4.4. Setting of L

L refers to the initial number of the nearest neighbors of each
lifting point, which highly influences the computation efficiency.
Given that a target region only intersects with some nearest
bisectors, finding excessive nearest neighbors of the target lifting
point is unnecessary. On the contrary, if L is too small, then the
routine of querying k-nearest neighbors using the KD-tree has to
be invoked more frequently, thereby consuming more time.

To find an appropriate value of L, we randomly generate five
sets of weighted seeds with different numbers on three input
domains, i.e., a 2D unit square, the surface and the volume of
a unit cube. Their time costs are recorded for generating power
diagrams at different values of L (ranging from 4 to 256). The
timing curves are plotted in Fig. 4, where we can observe that
the trend of all curves is similarly gradually rising after a slow
decline. According to the lowest point of each curve, we suggest
L = 14 ∼ 18 for the 2D and the surface cases, whereas L = 30 ∼
35 for the 3D case.

5. Acceleration

The proposed algorithm computes the restricted Voronoi cells
of lifting points. We can further speed up the computation of the
cell of pi by replacing pi with its twin point qi = {vi,−

√
η − wi},

i while fixing other lifting points.
As illustrated in Fig. 5, suppose that ∥pj − pi∥

2 < ∥pk − pi∥
2

nd
√

η − wj >
√

η − wi >
√

η − wk (
√

η − w is the height
f the corresponding lifting point to the 2D plane (light blue)).
f we compute the cell of pi, the bisector Bij between pj and pi
is used before the one Bik between pk and pi. However, in this
situation, the distance from pi to the intersection of Bij and Rd

is possibly larger than that from pi to the intersection of Bik and
Rd, resulting in the clipping launched by Bij being meaningless.
More importantly, such a situation is detrimental to reaching the
termination condition of cell clippings as soon as possible.

Section 3 indicates that the cell result of pi is equivalent to
that of qi,∀i. For computing the cell of qi, i = 1, . . . , n using the
proposed algorithm, we keep the same set of {pi}

n
i=1 in the KD-

tree, but perform kNN query for qi instead of pi, then we simply
skip pi when it appears in the list of neighbors. In the situation
in Fig. 5, ∥pk − qi∥

2 is possibly smaller than ∥pj − qi∥
2. Hence,

he bisector between pk and qi clips the cell of qi earlier, thereby
roducing smaller maximum distance from qi to the cell, and

allowing us to end the cell computation with fewer clipping tests.
This trick can effectively improve the efficiency of the mesh-

less computation of power diagrams. A comparison result is
shown in Fig. 6. The inputs are the same as the configuration
set in Fig. 3 except for the number of seeds. We test 10 sets of
random seeds for the 2D, surface, and 3D cases, respectively, and
 y
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Fig. 5. The termination condition of computing the restricted Voronoi cell of qi
could be met earlier than that of computing restricted Voronoi cell of pi , thereby
speeding up the computation of power diagrams.

then plot the average clipping number and computation time of
the proposed algorithm before and after using the acceleration.
It can be seen clearly that both the average clipping number
and computation time decrease remarkably after the acceleration
technique is embedded. In the remainder of this paper, we refer
to the accelerated version as our method.

6. Results and applications

Our method can be applied to the computation of general
power diagrams without restrictions on the locations and weights
of the given seeds. We focus on its performance in the 2D and
3D spaces in this paper. In this section, we first show the power
diagram results generated by our method. Then, we compare
our method with the RT-based method in efficiency. Finally, we
show the applications of our method in blue noise sampling,
adaptive remeshing, and visualization. The proposed algorithm
is realized using C++,1 the KD-tree construction and kNN query
are implemented by the NanoFLANN library [47]. The RT-based
method is implemented by the CGAL library [18]. We feed a set
of tetrahedra to the algorithm when computing the 3D power
diagrams. For clipping a 3D cell with a bisector, we use it to clip
all the boundary facets of the cell and connect the intersection
points to form a new facet appending to the cell. All results are
obtained using a laptop with a 1.6 GHz Intel Core I5 processor (4
cores) and 16 GB RAM.

1 The implementation of our method is open-sourced on https://github.com/
anyangxiao/voronoi.git

https://github.com/yanyangxiao/voronoi.git
https://github.com/yanyangxiao/voronoi.git
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Fig. 6. Comparisons of average clipping number and computation time before and after acceleration. The inputs are consistent with the configuration in Fig. 3 except
for the number of seeds.
Fig. 7. Power diagram results of randomly generated seeds. Hidden seeds with empty cells are still shown.
u
r

.1. Results and comparisons

Figs. 1 and 7 show our power diagram results on differ-
nt domains (2D polygon, surface mesh, and 3D volume), re-
pectively. The testing seeds in Fig. 1 are generated by uniform
ampling from the domain and attaching random weights rang-
ng [−0.01, 0.01], whereas the seeds in Fig. 7 are generated
andomly, and the weights are in the range [−0.05, 0.05].

We now discuss the efficiency of our method. It has shown
hat the distribution of Voronoi seeds is an essential factor affect-
ng the efficiency of the kNN based method, and the computation
f the case with uniform distribution is faster than that of the one
ith random distribution [28], where the Voronoi seeds with uni-

orm distribution means the seeds are distributed in the manner
f blue noise sampling, while the seeds with random distribution
eans the seeds are distributed in white noise. The reason is that

he termination condition of clippings can be satisfied earlier in
he uniform case than that in the random case. Therefore, the
fficiency of our method is sensitive to the distribution of the
ifting points, depending on the seed locations and weights. In the
ext, we compare our method with the RT-based method. Since
he method of Basselin et al. 2021 [30] requires similar weights
f adjacent seeds, it cannot be used for the computation of power
iagrams in general cases. Therefore, comparisons with Basselin
t al. 2021 [30] are not provided.
For computing power diagrams in most cases, our method can

rovide higher speed than the RT-based method, as demonstrated
y the comparisons of running time in Fig. 8. Given domain
0, 1, 000]d, and from a random initialization with 10,000 seeds,
e perform the centroidal Voronoi tessellation method [48,49]
o obtain 100 sets of seeds. Each set is assigned random weights
n 100 different ranges [−w, w], where w ∈ [0, 5]. The total
252
10,000 sets of seeds are then tested by the RT-based method
and our method. Each set of seeds is tested 10 times, and we
plot their average running time in Fig. 8. The results of 1,000
seeds with four typical configurations (random locations with
zero weights, random locations with random weights in [−5, 5],
niform locations with zero weights, and uniform locations with
andom weights in [−5, 5]) in the 2D space are shown in Fig. 9.

Fig. 8 clearly shows that the computation time of our method
drops with the improvement of seed uniformity, whereas the RT-
based method remains stable, especially in the 3D case. However,
our method outperforms the latter method for all the tests in the
2D and surface cases. In the 3D case, our method is more efficient
only when the positions and weights of the seeds become uni-
form. The reason is that our method requires much more clipping
tests between cell facets and bisectors than the RT-based method
when the seeds are not uniform, especially in higher dimensional
spaces.

Fortunately, once the neighboring relationship between seeds
is obtained, the clipping of each power cell is independent, which
is suitable for parallel computation. We implement the parallel
clipping for the RT-based method and ours and test the above
data. The surfaces of running time are also drawn in Fig. 8. The
figure shows that the parallel version of our method is more
efficient than that of the RT-based method for all the cases. The
reason is that the construction of KD-tree costs far less than
that of regular triangulation, making our method have higher
parallelism.

Table 1 shows a time comparison of the main steps between
the RT-based method and ours on the examples in Figs. 1, 7, 9.
As mentioned, our method costs most of its time in the clipping
stage. By contrast, the RT-based method usually spends less time
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Fig. 8. Time comparison with the RT-based method. The efficiency of our method is sensitive to the distribution of seed locations and weights, but it is still better
han that of the RT-based method for most cases, except for the 3D cases with random seeds. We also compare the parallel versions of this two methods, and ours
rovides better efficiency for all the cases.
Fig. 9. The time that our method computes power diagrams of 1,000 weighted seeds with different configurations. (a) random locations, zero weights; (b) random
locations, random weights in [−5, 5]; (c) uniform locations, zero weights; (d) uniform locations, random weights in [−5, 5].
Table 1
Time comparison of the main steps between the RT-based method and our method (second).
Figs. #Region #Seed RT-based method Our method

RT Clipping Total KD-tree Clipping Total

Serial Parallel Serial Parallel Serial Parallel Serial Parallel

1 (left) 1 100 0.001 0.001 0.001 0.002 0.002 0.0001 0.001 0.001 0.0011 0.0011
1 (middle) 5,000 1,000 0.011 0.059 0.026 0.07 0.037 0.001 0.04 0.019 0.041 0.02
1 (right) 15,663 3,000 0.039 1.273 0.676 1.312 0.715 0.001 1.057 0.475 1.058 0.476
7 (a) 1 500 0.002 0.001 0.001 0.003 0.003 0.0002 0.002 0.001 0.0022 0.0012
7 (b) 4,000 2,000 0.027 0.081 0.04 0.108 0.067 0.001 0.065 0.029 0.066 0.03
7 (c) 8,244 3,000 0.019 0.331 0.225 0.35 0.244 0.001 0.413 0.192 0.414 0.193
9 (a) 1 1,000 0.005 0.005 0.003 0.01 0.008 0.001 0.007 0.003 0.008 0.004
9 (b) 1 1,000 0.005 0.005 0.003 0.01 0.008 0.001 0.007 0.004 0.008 0.005
9 (c) 1 1,000 0.004 0.004 0.003 0.008 0.007 0.001 0.005 0.003 0.006 0.004
9 (d) 1 1,000 0.004 0.005 0.003 0.009 0.007 0.001 0.006 0.004 0.007 0.005
on clipping because the triangulation provides an explicit neigh-
borhood for each seed. Their time of parallel computation is also
given in the table, implying a better performance of the parallel
version of our method.

Fig. 10 compares the computation time of the RT-based
ethod, our method, and their parallel versions against the num-
er of seeds with random and uniform locations, respectively. The
nput domains are the same as that in Fig. 8, and the weights are
andomly generated in [0, 0.1] to reduce the impact of the hidden
eeds. Our method is faster than the RT-based method and its
arallel version for the 2D and surface cases, while the parallel
ersion of our method outperforms the rest for all the cases. As
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the number of seeds increases, the RT-based method spends a
larger part of its time constructing regular triangulation, resulting
in a lower acceleration ratio of its parallel computation.

6.2. Applications

Our method and its parallel implementation can provide much
higher computational efficiency than the state-of-the-art method.
It is suitable for applications requiring the frequent computation
of power diagrams.
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Fig. 10. The computation time of the RT-based method, our method and their parallel versions against the number of seeds.
Fig. 11. Blue noise sampling with 1,000 points in 2D and 3D spaces. Left: 2D random initialization; middle left: 2D result after 100 iterations; middle right: 3D
andom initialization; right: 3D result after 100 iterations. Our method saves 7.97 s (2D) / 51.61 s (3D) in total over the RT-based method.
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.2.1. Blue noise sampling
Blue noise sampling is a core problem in computer graphics,

nd has been studied for many years [7,8,50]. de Goes et al.
012 [7] and Xin et al. 2016 [8] presented capacity-constrained
entroidal power diagrams to generate density-adapted uniform
oint sets. The results are obtained by minimizing the following
nergy function:

({vi, wi}
n
i=1) =

n∑
i=1

∫
Ωi

ρ(x)∥x−vi∥2dx−
n∑

i=1

wi(
∫

Ωi

ρ(x)dx−m),

here ρ(x) is the density function, Ωi the power cell, and m the
apacity constraint. We adopt the optimization algorithm of Xin
t al. 2016 [8] to search the minimum. Fig. 11 shows a blue noise
ampling result after 100 iterations, where ρ(x) = 1/(∥x∥2+0.1).
he result is obtained in 8.61 s (2D) / 258.82 s (3D) using our
ethod for the computation of power diagrams in the algorithm.
y contrast, using the RT-based method requires 16.58 s (2D) /
10.43 s (3D). With the improved uniformity of the seed, our
ethod can significantly speed up the algorithm.
 t

254
.2.2. Adaptive remeshing
Given an input mesh, surface remeshing aims to produce an

pproximating mesh with higher quality. Power diagrams have
een successfully applied to adaptive remeshing by Yan et al.
014 [10]. The algorithm presented in [10] extends the farthest
oint optimization (FPO) method [51]. After initial sampling on
he input surface and computing their restricted power diagram,
n each iteration, FPO deletes each point and updates the power
iagram, and then inserts a new point at the location that is
arthest from the other points, where the power distance de-
ines the distance between two points. Once the algorithm is
ompleted, the resulting mesh can be extracted from the power
iagram based on its duality. The computation and local update
f the power diagram runs through the entire algorithm. Our
ethod with an incremental KD-tree is applied to the power
iagram computation in this algorithm. Note that the propagation
trategy [27] is embedded in our method for the local update
f the power diagram. An adaptive remeshing result with 5,000
oints after 20 iterations is generated in 84.56 s, as shown in
ig. 12, where the mean curvature is used to decide the weights of
oints. In comparison, the algorithm using the RT-based method
o update the power diagram consumes 0.93 s more per iteration.
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Fig. 12. Adaptive surface remeshing using farthest point optimization
ethod [10], where the power diagram is updated by using our method. The
eights of samples are determined by the mean curvature. Left: input surface;
iddle: result power diagram; right: duality of the power diagram.

.2.3. Voronoi treemap generation
Treemap is a well-known structure for the visualization of

ttributed hierarchical data. Balzer and Deussen 2005 [52] and
ocaj and Brandes 2012 [44] proposed Voronoi treemap ap-
roaches to represent a polygonal shape to each node of the data.
or a single layer of the data in a polygonal domain, they aim to
enerate a power diagram where, for each cell, the ratio of area to
otal area is the same as that of the associated attribute to total
ttribute. In each iteration, the Voronoi treemap approach [44]
oves the seeds to the cell centroids and increases or decreases

he weights based on the difference between the area share and
he attribute share. Our method can also accelerate the generation
f Voronoi treemaps. Computing the power diagrams using our
ethod, the Voronoi treemap approach generates a result for
3,558 weighted nodes in 27.41 s, as shown in Fig. 13. The
riginal algorithm, which relies on the convex hull computation,
osts 36.25 s.

. Conclusions and future work

We provide a variant for lifting the weighted seeds to a set of
oints in a higher dimensional space, then the power cells can be
irectly obtained by computing the intersections of the Voronoi
ells of these lifting points and the original space. This property
llows us to tailor a Voronoi generation method to compute the
ower diagrams. The proposed method initially generates the
255
lifting points of the given weighted seeds and gradually clips the
given domain to produce each power cell based on the sorted
k-nearest neighbors of the corresponding lifting point. Experi-
mental results show that our method and its parallel version
perform better than the standard triangulation-based method for
general cases in the 2D and 3D spaces.

The termination of the clipping procedure for each power cell
is highly affected by the distribution of the lifting points. Thus,
the efficiency of our method is sensitive to the seed locations
and weights. We plan to modify the clipping strategy to avoid
as many invalid cell-bisector clipping tests as possible to im-
prove efficiency and weaken the influence of the distribution
of the weighted seeds. We are also interested in extending the
algorithm on the GPUs and exploring more applications.
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