IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 27, 2025

1033

Accelerated Lloyd’s Method for Resampling
3D Point Clouds

Yanyang Xiao ", Tieyi Zhang *“, Juan Cao

Abstract—We present an efficient approach to generating
uniformly distributed resampling points of raw 3D point clouds.
A key contribution for making such a resampling method both
practical and efficient is the construction of the centroidal Voronoi
tessellation on the given point cloud efficiently achieved by
applying the proposed Anderson-accelerated Lloyd’s method. The
calculations involved in the method are mainly carried out over
a group of locally approximated quadratic surfaces, instead of
directly on the given point cloud, providing us a great advantage
in filtering out the affection of distribution of original points on
output results. Once the resampling points are initialized, the
resampling quality can be improved progressively by optimizing
resampling points and updating the local approximated surfaces.
In addition, by restricting the movement of resampling points,
we can deal with unclosed point clouds without any boundary
detection. Our approach outperforms existing resampling methods
in generating uniform results, and extensive experiments are
conducted to demonstrate its efficacy.

Index Terms—Anderson acceleration, Lloyd’s method, point
clouds, resampling.

1. INTRODUCTION

OINT clouds are one of the most popular representations of

3D objects and environments. Owing to its simplicity and
flexibility, they have been widely used in various applications,
including mobile mapping [1], virtual reality [2], and heritage
digitalization [3]. With the rapid development of 3D sensing
techniques and devices, the acquisition of point clouds is be-
coming much easier and more convenient.

Manuscript received 30 July 2022; revised 21 October 2023 and 8 February
2024; accepted 9 May 2024. Date of publication 27 May 2024; date of current
version 21 February 2025. The work of Yanyang Xiao was supported in part by
the National Natural Science Foundation of China under Grant 62102174 and in
part by the Jiangxi Provincial Natural Science Foundation, China under Grant
20232BAB212010. The work of Juan Cao and Zhonggui Chen was supported in
part by the National Natural Science Foundation of China under Grant 61972327,
Grant 62272402, and Grant 62372389, in part by the Special Fund for Key
Program of Science and Technology of Fujian Province, China under Grant
2022YZ040011, in part by the Natural Science Foundation of Fujian Province,
China under Grant 2022J01001, and in part by the Fundamental Research Funds
for the Central Universities, China under Grant 20720220037. The guest editor
coordinating the review of this manuscript and approving it for publication was
Prof. Mingqiang Wei. (Corresponding author: Zhonggui Chen.)

Yanyang Xiao is with the School of Mathematics and Computer Sci-
ences, Nanchang University, Nanchang 330031, China (e-mail: xiaoyanyang @
ncu.edu.cn).

Tieyi Zhang and Zhonggui Chen are with the School of Informatics, Xiamen
University, Xiamen 361005, China (e-mail: rysx.zty @gmail.com; chenzhong-
gui@xmu.edu.cn).

Juan Cao is with the School of Mathematical Sciences, Xiamen University,
Xiamen 361005, China (e-mail: juancao@xmu.edu.cn).

Digital Object Identifier 10.1109/TMM.2024.3405664

, Senior Member, IEEE, and Zhonggui Chen

, Senior Member, IEEE

However, due to the device accuracy limitations and sens-
ing conditions, most scanned point clouds usually suffer from
artifacts, such as redundancy, noises, outliers, and uneven point
distributions, challenging storage and processing in downstream
applications. Although point clouds can be organized into other
data structures, such as octree encoding [4], to reduce these ar-
tifacts significantly, many details will be lost and the distortion
error will be much higher. On the other hand, it is required to
generate denser points from given sparse points, or recover orig-
inal points from compressed point clouds, i.e., upsampling [5],
[6], [7]. Therefore, the conversion of the given point clouds into
noise-free, uniform, and low-distortion results by resampling
has become an important preprocessing stage for various point
cloud-based tasks. An example of resampling is given in Fig. 1,
where a large-scale point cloud with varying densities is uni-
formly resampled with a sampling rate of 2%.

Many studies have focused on point cloud resampling, most of
which cannot generate uniform results from arbitrary raw data.
The simplification-based methods (e.g., [8], [9], [10], [11]) se-
lect a subset of original points as the result and aim to preserve
as much of the underlying shape represented by the point cloud
as possible, while usually caring less about the point distribu-
tion in the subset. By contrast, some methods (e.g., [12], [13],
[14]) directly act on the original points, so that their outputs are
severely affected by the uneven distribution of original points,
resulting in poor uniformity.

To attenuate the influence of the original distribution as much
as possible, a class of proxy-based methods attempts to extract
the underlying surface of the input points as the resampling do-
main. For instance, Li and Sun [15] construct a k-nearest neigh-
bors (KNN) graph from an over-segmentation of the given point
cloud for uniformly sampling new points, while Chen et al. [16]
and Han et al. [17] replace the input point cloud with a set of local
planes, on which the resampling points can be then optimized.
A more straightforward way is to reconstruct an approximating
surface of the input points, which is then used for the subsequent
optimization [18].

The goal to generate randomized point distribution as uniform
as possible is similar to blue-noise sampling [19], [20], [21],
[22], [23], [24], [25], but it commonly runs on given continuous
domains. Blue-noise sampling can provide benefit for many ap-
plications and has attracted considerable attention in computer
graphics. One of its primary objectives is to avoid repetitive
patterns in the resultant point set, which is usually ignored in
point cloud resampling tasks. We focus on producing points with
high uniformity from given point clouds. Among these sampling

1520-9210 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Nanchang University. Downloaded on February 23,2025 at 11:26:29 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-5448-2450
https://orcid.org/0000-0001-5718-0346
https://orcid.org/0000-0002-8154-4397
https://orcid.org/0000-0002-9960-4896
mailto:xiaoyanyang@penalty -@M ncu.edu.cn
mailto:xiaoyanyang@penalty -@M ncu.edu.cn
mailto:rysx.zty@gmail.com
mailto:chenzhonggui@xmu.edu.cn
mailto:chenzhonggui@xmu.edu.cn
mailto:juancao@xmu.edu.cn

1034

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 27, 2025

Fig. 1.

Our method generates resampling points with high uniformity from a raw point cloud with varied densities. (a) Input with 5 M points; (b) Output with

100 K points and a close-up view of sampling distribution highlighted in the red box.

approaches, centroidal Voronoi tessellation (CVT) [26], [27] is
one of the most frequently involved methods. The CVT-based
methods typically minimize a tailored energy function to op-
timize the point locations so that the point set becomes pro-
gressively uniform. The minimization can be accomplished
by different methods, where Lloyd’s method [28] is the most
commonly used. However, the CVT cannot be directly com-
puted on discrete domains, such as point clouds. Benefiting
from the construction of the abovementioned local planes, Chen
et al. [16] have successfully extended the computation of CVT
to point clouds.

This paper aims to produce uniform and feature-preserving
resampling points for arbitrary raw data. To achieve this goal,
we convert the resampling task into the efficient computation of
CVT on an intermediate domain consisting of quadratic patches.
Given that the plane causes high distortion error when repre-
senting points with widely differing normals, we introduce a
similar domain consisting of a set of quadratic surfaces to bet-
ter capture data features. Owing to the linear convergence of
Lloyd’s method, we incorporate the Anderson acceleration tech-
nique [29] to speed up the optimization of resampling points. The
specific contributions of this paper are as follows.

® We propose a novel resampling method by generating
CVTs on a set of quadratic surfaces that locally approx-
imate the input point cloud. The resampling result has a
uniform point distribution, and the feature of input point
clouds are preserved.

e We tailor an efficient algorithm by combining Lloyd’s
method and the Anderson acceleration technique to speed
up the computation of resampling, significantly improving
the resampling quality within a given number of iterations.

® We set a move distance limit for each resampling point to
prevent the resampling point on the boundary from deviat-
ing too much from the original data. Hence, our algorithm
can handle boundaries and fill small holes in point clouds
without any preprocessing.

The remainder of this paper is organized as follows. After

a short review of related work in Section II, we describe the
definition of our CVT-based energy function on point clouds in
Section III and the efficient resampling algorithm in Section I'V.
Several experiments are demonstrated to evaluate our method in
Section V. Finally we conclude the paper in Section VI.

II. RELATED WORK
A. Resampling Methods

A thorough survey of point cloud resampling methods can be
found in [30]. Here, we mainly review optimization- or proxy-
based ones proposed in recent years.

Lipman et al. [12] presented a locally optimal projection
(LOP) operator to generate results by minimizing the distance
between resampling and original points and maximizing the
space between resampling points. However, the point density
of the resampling result generated by the LOP method remains
similar to that of the input point cloud. By introducing den-
sity weights, Huang et al. [13] proposed the weighted LOP
(WLOP) to deal with non-uniform raw data. Other variants of
LOP have been developed to meet user requirements, such as the
feature-preserving [31] and the edge-aware versions [32]. Given
that LOP and its variants act directly on the given points, they
are more or less affected by the non-uniform distribution of the
raw data, hence difficult to produce highly uniform resampling
points.

To remove the influence of the original point distribution,
the proxy-based methods take an approximate surface of the
given point cloud as the resampling domain. Li and Sun [15]
build a KNN graph from an over-segmentation of the raw data,
which is followed by a LOP-like optimization. Lv et al. [18]
reconstruct a surface with global continuity as the domain for
resampling. Some methods approximate the point clouds with
a set of local planes. Song and Feng [8] selecte a subset of
original points and update them with the closest points to the
corresponding tangent planes, but the resulting point distribution
is highly input-dependent. Chen et al. [16] focus on isotropic
and anisotropic resampling of point clouds on smooth surfaces
by computing CVTs on local fitting planes that are similarly
employed in [17]. However, sharp features are ubiquitous in
point clouds, and using planes to represent local points with
such features is not reasonable. Therefore, we choose quadratic
surfaces to construct the resampling domain to better capture
features of the raw data. Given the power of the CVT method in
generating uniform point sets, we further extend it to this domain
for resampling arbitrary point clouds.

Since PointNet [33] successfully extends convolutional
networks to unstructured datasets, there has been an increasing

Authorized licensed use limited to: Nanchang University. Downloaded on February 23,2025 at 11:26:29 UTC from IEEE Xplore. Restrictions apply.

XIAO et al.: ACCELERATED LLOYD’S METHOD FOR RESAMPLING 3D POINT CLOUDS

amount of research on point cloud processing based on deep
learning, a part of which involves denoising and upsampling [5],
[6], 171, [34], [35], [36], [37], [38]. Rakotosaona et al. [36]
propose the PointCleanNet to estimate correction vectors
that project noisy points onto the original clean surfaces.
PU-Dense [6] uses sparse networks to reconstruct the geometry
of upsampled point cloud via progressive rescaling and multi-
scale feature extraction. Chen et al. [7] represent a point cloud
via its gradient field, which is enforced to be continuous and can
be estimated by deep learning. Differently, Hermosilla et al. [35]
treat the convolution as a Monte Carlo integration problem,
making the learning robust to non-uniform distributions. These
deep learning-based methods are usually task-driven, ignoring
the quality of resultant points, which is not the same as the
purpose of our method to obtain uniform points.

B. CVT Methods

For a given continuous domain, CVT is a special case of
Voronoi tessellation whose generating points coincide with the
centroids of corresponding Voronoi regions. CVT can also be
defined as the minimum of an energy function [26]. Lloyd’s
method [28], a type of fixed-point iteration that converges lin-
early, is one of the most commonly used methods for search-
ing the minimum. Liu et al. [27] pointed out that the CVT en-
ergy function is C'? continuous, and they apply a quasi-Newton
method to speed up the minimization. In field of computer graph-
ics, the CVT method is a popular tool to produce uniform point
distributions, and has been extensively studied in a wide range
of applications, such as the surface and volume remeshing [39],
[40]. Chen et al. [16] successfully extended the CVT energy
function to point clouds for isotropic and anisotropic resampling.
However, their method is not feature-sensitive and not applicable
to point clouds with complex boundaries unless the boundaries
are extracted and processed in advance. We provide a more ro-
bust CVT-based resampling method to address these issues. In
addition, the quasi-Newton methods that require high continuity
of energy functions are not applicable for accelerating the CVT
computation on point clouds. Thus, we incorporate the Anderson
acceleration technique [29] to speed up the convergence.

C. Anderson Acceleration

Anderson acceleration is a technique for accelerating the con-
vergence of a fixed-point iteration and has been used in a broad
context for a variety of algorithms. It was originally invented
by Anderson [29] for the iterative solution of nonlinear inte-
gral equations. Coincidentally, Pulay [41] independently pro-
posed this technique for self-consistent field iteration in elec-
tronic structure computations, which is also known in quantum
chemistry as Pulay mixing or direct inversion in the iterative
subspace. It was also presented by Washio and Oosterlee [42]
as a Krylov subspace acceleration technique for solving non-
linear partial differential equations. The core idea of Anderson
acceleration is to weight several previous iterates to derive a new
one in each iteration, and it does not require the computation or
approximation of Jacobians or Jacobian-vector products, pro-
viding an advantage over Newton methods. It can also be used

1035

as a type of quasi-Newton method for solving nonlinear equa-
tions [43]. Toth and Kelley [44] proved its local convergence
for contractive fixed-point iterations. Anderson acceleration has
been widely used in various applications, including numerical
problems [45], fluid dynamics [46], geometry optimization and
physics simulation [47]. In this paper, we extend Anderson ac-
celeration to the computation of resampling points.

III. CVT oN POINT CLOUDS

Given an arbitrary unstructured 3D point cloud P = {p;}¥ |,
our goal is to produce resampling points that are as uniform and
feature-preserving as possible. We present an efficient method
to achieve the goal by obtaining a CVT on a set of local quadratic
surfaces which approximate the input point cloud. First, we need
to extend the definition of the CVT energy function to point
clouds.

A. Energy Function

Given a set of seed points X = {x;}7" ; on a continuous sur-
face 2 C R?, the Voronoi diagram divides the space R? into
an equal amount of smaller regions, i.e., Voronoi cells {V;}7,,
where

Vi={xeR®||jx— x| <|x—x|,Vj#i}.

By restricting the Voronoi cells to the domain {2, we obtain a par-
tition of the domain, and each sub-region §); is called restricted
Voronoi cell (RVC). In particular, 2; = V; N Q for x;.

The CVT is a special type of Voronoi tessellation in which
each seed point coincides with the centroid of the corresponding
Voronoi region. From the variational point of view, a CVT can
also be defined as the minimum of the following energy function

BxX) =Y /Q p(x) 1% — x| dx, ()
i=1 7%

where p(x) is a density function, controlling the sizes of Voronoi
cells, and we set p(x) = 1 for our case. The optimization of the
positions of seed points X will make them evenly distributed
on (2, which is usually accomplished by using the Lloyd’s
method [28] or the BFGS method [27].

However, we cannot directly extend the computation of CVTs
on the point cloud since the underlying surface is usually un-
known. We have to first extract the domain that RVCs can be de-
fined. Fortunately, by constructing a set of local approximating
planes of the raw data (Fig. 2(a)), Chen et al. [16] successfully
generalized the CVT energy function to point clouds. These
bounded planes make up a discrete surface of the input point
cloud, which is commonly adopted by existing methods. Using
the plane to represent points with widely differing normals, such
as sharp features of the point cloud, causes high distortion error.
Therefore, we choose quadratic surfaces to locally approximate
the input points because of their better performance in feature
preservation, as illustrated in Fig. 2, at the cost of a light increase
in computation.

In particular, the quadratic surface S; at point x; is locally
computed as the least squares fitting of the k-nearest neighbors of

Authorized licensed use limited to: Nanchang University. Downloaded on February 23,2025 at 11:26:29 UTC from IEEE Xplore. Restrictions apply.

1036

Fig. 2. Tllustration for demonstrating the superiority of quadratic surfaces in
preserving details and features over planes. The input points, resampling points,
and approximating shapes are marked by dark grey points, red points, and green
line segments/curves, respectively. (a) Approximating planes; (b) Approximat-
ing quadratic surfaces.

x; in the input point cloud. The details are given in Section III-B.
Then the RVC of x; is obtained by calculating the intersection
between its 3D Voronoi cell V; and the corresponding surface
S;, as seen in Section III-C. With this configuration, the CVT
energy function is then modified to

E(X) = —x;||? dx. 2
() ;/an x? dx @)

The set {S;}/_, is dynamically changed with the optimization
of {x;}7 ;. We will adopt Lloyd’s method with Anderson ac-
celeration to obtain CVTs and uniform points on the given point
cloud, which can be found in Section IV.

B. Quadratic Surface Construction

In this section, we explain how to quickly construct an ap-
proximating quadratic surface at each seed point.
An implicit quadratic surface is formulated as

S(z,y,z)=f-A=0 3)
where f = (22,42, 22, 2y, yz, 27, 2,9, 2,1)T is the basis func-
tion and A = (A1,...,A10)7 the parameter vector. For a seed
X;, we find its k-nearest neighbors P; from the point cloud P
and suppose that px, € P; is the nearest one. The normal np,_.
of px, is estimated as the unit normal of the best fitting plane of
P;. The steps to construct the approximating surface of x; are
given as follows, accompanying with an illustration in Fig. 3.

Step 1: transformation. The point set P; is translated to the
coordinate system originating at px, by left-multiplying a trans-
lation matrix

| BN o N
01><3 1

T =

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 27, 2025

(b) The point set after
translation and rotation

(a)A local point set and

\ its best fitting plance
(c) The fitting quadratic !
surface of points in (b)

(d) Define a domain mesh |

| (f) Mesh vertices are rransformed:
back to the original system with |
the fixed connectivity

(e) Lift mesh vertices to
the quadratic surface in (c)

Fig. 3. Illustration for the construction of a local fitting quadratic surface.

in homogeneous coordinates, where Is.3 is an identity matrix.
The translated points are rotated around (a,b,c)? = np, X

(0,0,1)™ with angle § = arccos(np, - (0,0,1)"), equaling to
left-multiplying a rotation matrix

R}
R,
RT

013

_ o O O

where R, = (ac(1 — cosf) + bsinf, ab(1 — cosf) — csind,
a? + (1 —a?)cos®)T, R, = (be(l — cosl) — asind,b* +
(1 — b?)cosh,ab(1 — cosf)) + csinf)T and R, = (¢ + (1 —
c?)cos), be(1 — cosh) + asinb, ac(l — cosd) — bsind)T.

Step 2: fitting. A new point set (); can be obtained after se-
quently applying the above two matrices to each point in F;,
indicated from (a) to (b) in Fig. 3, and (3) can be simplified to

z = S(x,y) = x? + koy® + Xaay + hax + X5y + Ae. (4)

We calculate the parameters ()f 1. ,Xs) over the point set Q);
in the least squares sense (Fig. 3(c)). We define the domain of
S (z,y) to be a hexagon with radius r centering at the origin,
where r is the average distance between x; and its six nearest
neighbors in X . Then, S(z, y) is completely constructed.

Step 3: meshing. We discretize the surface S(z, y) to a trian-
gular mesh M for the subsequent RVC computation. In partic-
ular, we sample the vertices of M from the domain of S (z,y)
using polar coordinates with gradually incremental radius and
angles and connect them by the Delaunay triangulation method.
These vertices are then lifted to S(z:,) with fixed connectivity,
producing a bounded surface mesh, see Fig. 3(d) and (e).

Step 4: inverse transformation. The local approximating sur-
face S; of x; can be obtained through inverse transformation of
M (Fig. 3(f)). By fixing the connectivity, each vertex of M is
transformed back by left-multiplying

I3.3 Px;

R
O3 1 7

where R~! is the inverse matrix of R.

Authorized licensed use limited to: Nanchang University. Downloaded on February 23,2025 at 11:26:29 UTC from IEEE Xplore. Restrictions apply.

XIAO et al.: ACCELERATED LLOYD’S METHOD FOR RESAMPLING 3D POINT CLOUDS

‘.....

.M..

Fig. 4. Schematic for the RVC computation. Raw points, resampling points,
approximate surface mesh, and bisectors between two consecutive resampling
points are marked by grey points, red points, green polylines, and orange dotted
lines, respectively.

These four steps provide us with the fast generation of local
surface meshes, where the meshing step is easy to implement
because of the transformation. By contrast, it is complicated if
meshing occurs directly in the original space.

C. RVC Computation

Once the approximating surface .S; of point x; is obtained, the
RVC computation of x; can be launched immediately. It requires
the 3D Voronoi cell V; of x;. A common practice is to first build
the Delaunay triangulation of the points X, and then compute
the dual diagram of the triangulation as the Voronoi cells. Owing
to the considerable time needed for the construction of Delaunay
triangulation, Lévy and Bonneel [48] proposed a more efficient
clipping algorithm based on a k-dimensional tree (KD-tree) of
X. The algorithm is based on the observation that Voronoi cell
V; is the intersection of half-spaces, bounded by the bisectors
between x; and its several nearest neighbors in X. We adopt
this algorithm for our RVC computation. Specifically, the RVC
of x; is obtained by clipping the surface mesh \S; by the bisectors
of all point pairs (x;,%;),7 = 1,...,n,j # 4. In practice, these
bisectors are sorted in advance by their distances to x;. Starting
from the nearest bisector, S; is gradually clipped into a smaller
one, and it ends when the clipping generates no intersection. An
illustration of the RVC computation is shown in Fig. 4.

IV. ACCELERATED LLOYD’S METHOD FOR POINT RESAMPLING

Our algorithm takes a point cloud P as the input and gen-
erates uniform resampling points with the desired number 7,
which mainly consists of the initialization stage and optimization
stage, proceeding as shown in Algorithm 1. The former allows
us to generate favorable initial resampling points, as seen in
Section IV-A. For the latter, we first present the details using
Lloyd’s method in Section I'V-B and then provide an accelerated
version in Section I'V-C. Resampling points should be projected
back to the underlying surface of the given point cloud once
they have been updated, which is described in Section IV-D.
Furthermore, we add a boundary restriction for the movement
of resampling points, enabling our method to be available for

1037

Algorithm 1: Accelerated Lloyd’s Method for Resampling

Input: point cloud P, iteration number K, ,x, and desired
point number n.
Output: uniform resampling points {x; }?_;.
1: initialize {x;}!"_, (Section IV-A);
2: k<« 1;
3: repeat
4: construct surface for each x; (Section III-B);
5: compute RVC for each x; (Section III-C);
6: optimize {x;}"_; (Section IV-C);
7: project {x;}!_; back to the surfaces (Section IV-D);
8 k+Ek+1;
9:until £ > K.y

unclosed data without any boundary detection, as seen in Sec-
tion I'V-E.

A. Initialization

Generating uniform points is one of the main goals of our
method. If the input points are unevenly distributed, our method
can still be applicable, but it may cost more iterations. The ef-
ficiency of our approach in obtaining uniform results is highly
dependent on initialization. This stage generates initial resam-
pling points for subsequent optimization. A simple and fast ini-
tialization method is to randomly select n points from the point
cloud P, resulting in a distribution that is highly similar to the
original points. To obtain a uniform result, the random initial-
ization imposes a heavy burden on optimization when the input
dataset is highly non-uniform, i.e., more iterations are required
to optimize the resampling points.

To reduce the iteration number of the proposed algorithm on
arbitrary input data, we employ an area-weighted initialization
method. The steps are as follows.

Step 1: We randomly select n points {x;}? ; from P, and
compute the local surfaces {5;} ; and the RVCs {Q2; = V; N
Sitt .

Step 2: ForeachRVC ();, we compute its area | {2, |, and sample
(1924] -)/ >°%_ 19| points in a random fashion. A large RVC
means sparse distribution of the original points, and the area-
weighted sampling can generate more points here.

Step 3: These sampled points may deviate from the underlying
surface of the given point cloud, and we update their respective
approximating surfaces and project them back according to the
operator described in Section IV-D. The projected points are our
initial sampling points, still denoted by {x; }!";.

This area-weighted initialization is independent of the original
distribution, and allows us to obtain uniform results with fewer
iterations. We give a comparison shown in Fig. 5 that our algo-
rithm runs on the random and the area-weighted initializations,
respectively. The input point cloud (Fig. 5(a)) is unevenly dis-
tributed, and a random initialization (Fig. 5(b)) shows a similar
distribution to the input, while an area-weighted initialization
(Fig. 5(d)) indicates an equal possibility of generating initial
resampling points everywhere. The resulting points (Fig. 5(c))
optimized from random initialization are still clustered heavily

Authorized licensed use limited to: Nanchang University. Downloaded on February 23,2025 at 11:26:29 UTC from IEEE Xplore. Restrictions apply.

1038 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 27, 2025
(d) (e)
Fig. 5. Comparison of random initialization and area-weighted initialization. The latter can provide us better initial resampling points to decrease the burden of

the subsequent optimization. (a) Input; (b) Random initialization; (c) Result from (b); (d) Area-weighted initialization; (e) Result from (d).

near the central region but sparsely on the borders. By contrast,
the area-weighted initialization leads to a more uniform distri-
bution after applying the same number of iterations (Fig. 5(e)).

B. Optimization Using Lloyd’s Method

After the initialization, the resampling points can be then
optimized under the guidance of CVT generation. We employ
Lloyd’s method to achieve the goal, which iteratively moves re-
sampling points to the corresponding RVC centroids. The move-
ment repeats K.y times, where K, is a preset maximum
iteration number, and each resampling point is updated by

Ik xdx
ViNnS;
XI.CJFI — (;].C A S

’ v fViﬁSi dX ’

where k is the iteration index, c; is the RVC centroid of x;.

After each movement of resampling points, we need to re-
build their approximating surfaces, meaning that (2) is defined
over a dynamic domain. Hence, any local minima of the energy
function implies nothing in our case, and the trend of the energy
function value probably fluctuates dramatically, as shown in the
top of Fig. 6(e), for example. An observation after our extensive
experiments is that using (5) to optimize the resampling points is
still capable of producing CVTs and uniform resampling points,
an example is shown in Fig. 6.

o)

Given that the uniformity of resampling points can no longer
be measured by the energy function values, we define another
intuitive metric below to quantify it:

) - \/Z?l ST ©

where d; is the distance between x; and its nearest neighborin X,
and d = 1" | d;/n is the average of the distance set {d; }I" ;.
0(X) is the variance of regularized {d;}? ,, measuring how
close from each d; to d. A lower § value means a more uniform
point set.

In Fig. 6, we demonstrate the quality improvement during
the optimization using Lloyd’s method, as seen in the trend of
uniformity metric at the bottom of Fig. 6(e). Starting from the
initialization in Fig. 6(b), the distribution of resampling points
becomes increasingly uniform during the optimization, which
is indicated by the overall decline of the metric value. The final
resampling result is shown in Fig. 6(c).

C. Optimization Using Accelerated Lloyd’s Method

Lloyd’s method can be viewed as the fixed-point iteration
that is with only linear convergence. Here, we incorporate An-
derson acceleration to speed up the optimization. The domain
of the proposed CVT energy function is dynamically changed
during the optimization, resulting in the family of Newton or

Authorized licensed use limited to: Nanchang University. Downloaded on February 23,2025 at 11:26:29 UTC from IEEE Xplore. Restrictions apply.

XIAO et al.: ACCELERATED LLOYD’S METHOD FOR RESAMPLING 3D POINT CLOUDS

(a) (c)

Fig. 6.

1039

= Lloyd
2.6 =—Lloyd+AA

CVT energy
N
N

22
2
0 10 20 30 40 50
[teration number
0.3 - .
= Lloyd
0.25 ——Lloyd+AA

Uniformity

) 10 20 30 40 50
Iteration number

(e)

Comparison between Lloyd’s method and the proposed Lloyd+AA method. (a) Input point cloud; (b) Initialization; (c) Result from Lloyd’s method;

(d) Result using the proposed Lloyd+AA method; (e) Energy function graph (top) and uniformity metric graph (bottom) for the two optimization methods,

respectively.

quasi-Newton methods that require high continuity of energy
function being not applicable in our case. Given that Anderson
acceleration has been utilized to speed up the searching for op-
timal solutions to various problems (e.g. [45], [46], [47]), and
Peng et al. [47] found that it works well for the minimization of
the CVT energy function defined over a continuous domain, it
can still be extended to our case in practice.

The k-th solution Y* = (x}7,... x*T)T can be updated
from the previous solution Y*~! in fixed-point iteration:

Y =G(YR), @)
where G is a mapping function, and the residual is
D" = G(Y") - Y". (8)

Anderson acceleration combines current iterate Y* and the pre-
vious at most m iterates Y*~1 ... ' Y*~ to derive a new iterate
Yk 1 that decreases the res1dua1 norm as much as possible, i.e.,

Q;l_ZaGY’” 9)
where (o), . .., aZ,) is obtained by solving a linear least-squares
problem:

2
(o ---,00) = argmin Zoszk’j ,8.t. Zaj =1.
(@0,am) |15 0 j=0

(10)
Walker and Ni [45] provides more details about the Anderson
acceleration technique.
We follow Peng et al. [47] to set the mapping G as
G (Yk) = (ckT, e chT)T
where c is the RVC centroid of x
derson acceleratlon needs to solve a (m + 1)

Y

in the k-th iteration. An-
x (m + 1) linear

system for (¢, . . ., o) in each iteration, involving more com-
putation compared with Lloyd’s method. However, m is ordi-
narily set to a small value, which is m = 4 in this paper, the
efficiency loss can be roughly ignored, as shown in Section V-E.
In addition, Anderson acceleration has been proven to become
unstable and may lead to divergence if the iterates are far away
from the solution [45], [49]. To improve the stability, we add a
uniformity check:
e [YL (YRR 25 (6 (V)

-)

12)
G(Y"), 6 (YL <6 (G (YF))

which means we always choose the one with better uniformity
from the Lloyd’s and the Anderson acceleration iterates. We
denote the hybrid optimization as Lloyd+AA.

A comparison of Lloyd’s method and Lloyd+AA is given in
Fig. 6. From the same initialization and with the same iteration
number, the hybrid optimization method generates a resampling
result with higher uniformity, as shown in the curves in Fig. 6(e).
In other words, Lloyd+AA requires fewer iterations to obtain
the resampling points with a target uniformity than Lloyd’s
method. Without specific notion, we adopt Lloyd+AA to run the
optimization.

D. Projection

After the optimization in each iteration, the resampling points
may deviate from the original point cloud because each centroid
is probably not on the corresponding RVC, especially in the
curved regions. Despite the deviation not accumulating during
the optimization, it affects the result of the KNN search and we
still pull the resampling points back to the point cloud.

A straightforward operator is to push each resampling point
back to its nearest neighbor in the input point cloud, poten-
tially resulting in the resampling points being a subset of the

Authorized licensed use limited to: Nanchang University. Downloaded on February 23,2025 at 11:26:29 UTC from IEEE Xplore. Restrictions apply.

1040

Fig. 7.
(b) Result without boundary restriction; (c) Result with boundary restriction.

original data and difficulty of uniformity improvement. Given
that we already have local surface meshes to represent the point
cloud, projecting resampling points to these meshes is reason-
able. More specifically, for each resampling point, we find its
nearest triangle in the local surface mesh and project it onto this
triangle. The projection only relies on these surface meshes and
guarantees the resampling points close to the original points. The
projected points are then used to compute new approximating
surfaces and RVCs in the next iteration.

E. Boundary Restriction

The existing resampling algorithms can be applied to unclosed
point clouds only when the boundary detection has been exe-
cuted in advance (e.g., Chen et al. [16]). The main reason is that
those resampling points initially located at boundaries will grad-
ually float away from the input data. A natural solution is to find
out all boundaries of the input and then fix resampling points on
the border during the optimization. However, challenges remain
in boundary detection for complex point clouds, narrowing the
application range of these algorithms.

We observe that the movement of resampling points only re-
lies on the local surface meshes, while the distance from each re-
sampling point to the given point cloud has not been considered.
We address this floating-issue by adding a distance restriction on
each resampling point. If the distance between the resampling
point and its nearest neighbor in P is greater than a given thresh-
old, the resampling point will stand still at the current iteration.

The distance threshold controls the magnitude of points drift-
ing. A smaller value will make the optimization of resampling
points stuck, while a larger one cannot eliminate the drifting
although it fills gaps in the input data. Owing to the scale differ-
ence of various inputs, setting the threshold at a fixed value is
difficult. Instead, we determine it using the intrinsic information
of the input data. Specifically, the threshold is scaled with an
average value of the distances between the original points and
their nearest neighbors in P. With massive tests, we find that
0.5~1.5 times this average distance is an acceptable tradeoff.

As shown in Fig. 7, we demonstrate the benefit of boundary
restriction that significantly reduces the points drifting. Complex
boundary information exists in the input point cloud (Fig. 7(a)).
The result obtained by the proposed algorithm without boundary
restriction is shown in Fig. 7(b), where the drifted resampling

(b)

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 27, 2025

Results without and with boundary restriction. The resampling points whose distance to the input data exceeds the threshold are marked in red. (a) Input;

points are marked in red. By adding this distance constraint,
we can produce uniform resampling points without the drifting
phenomenon, as seen in Fig. 7(c).

For resampling point clouds with holes, the boundary restric-
tion may be conflict with hole filling. If the hole size is larger
than the distance threshold of the boundary restriction, the hole
will not be filled completely, but it can be shrunk after applying
our method. Therefore, a promising solution is to run the pro-
posed algorithm few times, where the output of the algorithm is
fed as the input in the next time.

V. RESULTS

In this section, we evaluate our method of generating uni-
form and feature-preserving resampling points and explore its
applications. The proposed algorithm is realized in C++, and the
neighboring relationship between points is recorded through a
KD-tree implemented by the NanoFLANN library [50], [51],
which also provides efficient KNN query functions. All ex-
periments are executed on a PC with an Intel Xeon E3-1226
3.30 GHz CPU and 12 GB RAM.

For better visualization, the input data are rendered with their
original colors if the color attribute is available, and the color
of each resampling point is picked from its nearest point in the
input data. The point clouds in Figs. 11-13 are scale-normalized
to have a unit bounding box diagonal for point distances com-
parison. For numerical abbreviations, M is for million and K is
for thousand.

A. Uniform Resampling

All the examples in this paper demonstrate that our method
performs outstandingly in generating high-quality, feature-
preserving uniform resampling results. Fig. 1 shows our resam-
pling result of a street dataset. The input point cloud (Fig. 1(a))
contains 5 M points with uneven density, and we resample 100 K
points (2%) to represent the original environment. The output
is given in Fig. 1(b), where we can see all geometric informa-
tion is kept, and some small gaps are fulfilled (as seen in the
roof and the ground on the left). The uniformly distributed re-
sampling points also preserve the fine details and features of the
input, which can be observed from the windowsill enlarged in the
red box.

Authorized licensed use limited to: Nanchang University. Downloaded on February 23,2025 at 11:26:29 UTC from IEEE Xplore. Restrictions apply.

XIAO et al.: ACCELERATED LLOYD’S METHOD FOR RESAMPLING 3D POINT CLOUDS

1041

Fig. 8.

Comparison with Chen et al. [16], another CVT-based resampling method whose CVT energy function is defined on a set of local planes. The boundary

restriction has been added to Chen et al. [16]. (a) Input; (b) Result using method proposed by Chen et al. [16], § = 0.15; (c¢) Our result, 6 = 0.14. We possess
better performance in feature preserving because of the more accurate representation of the input point cloud, see the zoomed-in details.

B. Comparisons

Chen et al. [16] proposed another CVT-based point cloud re-
sampling method in which their CVT energy function is defined
on a set of local planes. Fig. 8 shows a comparison between their
method and ours, and for fairness, we have added the boundary
restriction to the implementation of [16]. The input is an indoor
point cloud and the part shown in Fig. 8(a) is one of its corners.
The resampling results of Chen et al. [16] and our method are
shown in Fig. 8(b) and (c), respectively. The zoomed-in RVCs
show that the quadratic surfaces represent the original points
more accurately than linear planes, especially near the regions
where the normals of original points change dramatically. The
better approximation of the input points contributes more to
decreasing the distortion error and increasing the uniformity of
resampling points, where the resulting ¢ value of Chen et al. [16]
is 0.15, while ours is 0.14.

We also compare our method with WLOP [13], Li and
Sun [15], Chen et al. [16] and Lv et al. [18] to further evalu-
ate our method. These methods are applied to different types of
point clouds, respectively, the results are shown in Figs. 9 and 10.
In Fig. 9, the input points exhibit a distribution of white noise.
We resample 10 K points from the given 30 K points by using
different methods. While the results show that all these methods
succeed to increase the level of uniformity of output points, our
method outperforms the others as evidenced by visualization
and 0 value of each result. In Fig. 10, the input dataset is highly
non-uniform, with a higher point density closer to the scanning

device, as shown in Fig. 10(a), and we resample 100 K points
from the given 881 K points. Although WLOP adds weight to
each input point to reduce the influence of the original distri-
bution on the result, generating resampling results with glob-
ally high uniformity remains difficult with WLOP, as seen in
Fig. 10(b). Similarly, the result of Li and Sun [15] (Fig. 10(c))
shows dense points in the central part and sparse distribution
on the left and right sides, since their optimization of resam-
pling points depends heavily on the nodes of the KNN graph,
which are usually not uniformly distributed. By contrast, Chen
etal. [16], Lvetal. [18] and our method produce much more uni-
form results even from the global perspective, as seen in the two
zoomed-in details and ¢ values. Differ from Lv et al. [18] who
adopt collapse and split operations, such non-uniform distribu-
tion is quickly eliminated by the area-weighted initialization in
our method.

More comprehensive quality comparisons are given in Table I,
where o and e are another two metrics of point uniformity. o is
defined as

it means the average Manhattan distance between the vectors
(di,...,d;,...,d,)T and (d,...,d,...,d)T, where d; and d

are the same with (6). A lower o value corresponds to a more

Authorized licensed use limited to: Nanchang University. Downloaded on February 23,2025 at 11:26:29 UTC from IEEE Xplore. Restrictions apply.

1042 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 27, 2025

(c) Liand Sun [15], 6 = 0.778

(d) Chen et al. [16], 6 = 0.083 (e) Lvetal [18],5 =0.119 (f) Ours, § = 0.072

Fig.9. Comparison between different resampling methods on point cloud of an object. From the quality statistics, it can be concluded that our method outperforms
the others in obtaining points with high uniformity.

(d) Chen et al. [16], § = 0.229 (e) Lvetal [18], 6 =0.223 (f) Ours, § = 0.211

Fig. 10. Comparison between different resampling methods on LiDAR point cloud. Both the close-up view of the two regions highlighted in the red and blue
boxes at the top of each result and the quality statistics indicate that our method achieves the best performance in the distribution uniformity.

uniform distribution. e measures cosine value of the angle be- itis in the range [—1, 1], and the higher the better. Table I shows

tween the above two vectors and can be calculated by that our results are the best for most tests, supporting the con-
s (d . a_l) clusion that our method shows the best performance of resulting
e(X) = =11 " point uniformity compared with WLOP [13], Li and Sun [15],

VO A2 d? Chen et al. [16] and Lv et al. [18]. Although the method of Lv

Authorized licensed use limited to: Nanchang University. Downloaded on February 23,2025 at 11:26:29 UTC from IEEE Xplore. Restrictions apply.

XIAO et al.: ACCELERATED LLOYD’S METHOD FOR RESAMPLING 3D POINT CLOUDS

1043

TABLE I
QUANTITATIVE COMPARISONS WITH WLOP [13], L1 AND SUN [15], CHEN ET AL. [16] AND LV ET AL. [18]

. 4 o €

Figs 3757 el 18] Ous | [13] [15] [16] (18] Ours | [13] 1151 [16] 18] Ours
1 1.475 1364 0433 0366 0352 [0.071 0.114 0.067 0.058 0.052 | 0.561 0591 0918 0.935 0.943
5 1.099 0.882 0415 0333 0335 | 0.022 0.039 0.024 0.015 0.016 | 0.673 0.749 0917 0951 0.948
6 0.504 0.225 0.143 0.121 0.115 | 0.0052 0.0018 0.002 0.0016 0.0019 | 0.893 0976 0.989 0.99 0.993
7 0.533 0291 0.285 0.284 0.282 | 0.028 0.017 0.022 0.019 0.024 | 0.882 0.960 0.959 0.9623 0.9627
8 0.189 0.194 0203 0.139 0.14 | 0.0027 0.0026 0.0024 0.0015 0.0017 | 0.983 0.982 0.979 0.995 0.991
9 0.122 0.778 0.083 0.119 0.072 | 0.197 0.951 0.148 0.204 0.131 | 0992 0.788 0.996 0.992 0.997
10 0.279 0377 0229 0.223 0.211 | 0.062 0.084 0.059 0.058 0.057 | 0963 0935 0971 0.967 0.972

Note: The best results in the table are shown in bold font. §, o and € are three different uniformity metrics, the lower § and o the better, and the higher
€ the better.

(d) (€)

Fig. 11.

(f)

Results that our method recovers point clouds from compressed point clouds. (a) original point cloud, 34 K points; (b), (d), (f) Octree encoded point

clouds of (a), where compression rates are 11.7% (b), 67.6% (d), and 88.2% (), respectively; (c), (e), (g) Recovered point clouds from (b), (d), (f), respectively, by
using our method. The color of each point in (b)—(g) indicates its distance to the nearest point of cloud (a).

et al. [18] produces competitive results, it is with much higher
time cost, as discussed in V-E.

C. Upsampling

Point cloud upsampling predicts and generates a denser point
cloud with fine details from the input points with low-density,
which is also required when recovering a compressed point
cloud. Benefiting from the construction of approximating sur-
faces of the given point cloud, our method is competent for the
upsampling task. A minor modification in the initialization of
the proposed algorithm can be made to generate more points
than the input. Specifically, most points of the input data are se-
lected and the disk radius r (Step 2 in Section III-B) is enlarged
to obtain the RVCs for full coverage of the point cloud surface.
From here, the new points with the desired number can be then
randomly sampled.

Recovering from compressed point clouds is a challenging
task since they usually suffer from the loss of geometry infor-
mation, including point vanishing and displacement. We provide
recovered results from octree encoded point clouds with differ-
ent compression rates by using our method in Fig. 11. Indicated
by the distances to the original point cloud, we can see that our
method is able to generate point clouds faithfully with the orig-
inal one when the compression rate is moderate, see Fig. 11(c)
and (e). However, our method cannot recover the details well
enough if the input is heavily compressed, see the ear part of
Fig. 11(g).

The point cloud upsampling also attracts much attention in the
community of deep learning (e.g., [6], [7]). We compare with
the PU-Dense method [6] in Fig. 12. Both methods succeed in
accomplishing the upsampling task. Implied by the point col-
ors, the result of the PU-Dense method seems globally closer
to the original point cloud than our result. It is worth pointing

Authorized licensed use limited to: Nanchang University. Downloaded on February 23,2025 at 11:26:29 UTC from IEEE Xplore. Restrictions apply.

1044

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 27, 2025

(a) (b)

Fig. 12.

Point cloud upsampling comparison with the PU-Dense [6]. (a) A point cloud from 8iVFBvV2 dataset [52], 784 K points; (b) Down-sampled cloud from

(a), 120 K points; (c) The upsampling result of the PU-Dense method from (b), 480 K points, § = 0.099; (d) Our upsampling result from (b), 480 K points,
6 = 0.087. The color of each point in (c) and (d) indicates its distance to the nearest point of cloud (a).

(b)

Fig. 13.

Point cloud denoising comparison with the PointCleanNet [36]. (a) Original point cloud, 655 K points; (b) Noisy point cloud of (a); (c) The result of

PointCleanNet, 100 K points, § = 0.561; (d) Our result, 100 K points, § = 0.08. The color of each point in (c) and (d) indicates its distance to the nearest point of
cloud (a). All the noises are removed successfully and fine details are recovered faithfully for both results, and our result is more uniform and closer to the original

point cloud than the result of PointCleanNet.

out that there is a part of points whose distance to the nearest
point of the original cloud is large; see the points in black circles
in Fig. 12(c). In contrast, our method focuses more on the uni-
formity of resultant points than the PU-Dense method (see the
comparison of zoomed-in details and § values), and each point
will be moved in our method, resulting in non-zero but small
distances between our result and the original point cloud.

D. Denoising

The noise depression is one of the intrinsic attributes of our
method. This is because the local surface construction filters
out the noises and each resampling point is projected onto the
corresponding local surface during the optimization, potentially

smoothing the resampling points. We provide a comparison with
the PointCleanNet [36], a deep learning-based method for point
cloud denoising, in Fig. 13. 25% of the input points (Fig. 13(a))
are randomly perturbed within a sphere with a radius of 0.01 to
generate the noisy data (Fig. 13(b)) (note that the point cloud is
scale-normalized to have unit bounding box diagonal). Despite
all the noises are removed successfully and fine details are re-
covered faithfully for both results, our result is more uniform
and closer to the original point cloud than the result of Point-
CleanNet. In addition, our denoising result is affected by the
number of point neighbors in the local surface construction. If
the number is small, those resampling points surrounded by too
many noises may not get free from them, whereas a large num-
ber will result in the accuracy loss of data representation. We

Authorized licensed use limited to: Nanchang University. Downloaded on February 23,2025 at 11:26:29 UTC from IEEE Xplore. Restrictions apply.

XIAO et al.: ACCELERATED LLOYD’S METHOD FOR RESAMPLING 3D POINT CLOUDS

TABLE II
RUNNING TIME COMPARISONS WITH WLOP [13], L1 AND SUN [15] AND
LV ET AL. [18] (SECOND)

Figs. #PL #P0. Kmas 1131 [15] _ [18] Ours
1 5M 100K 20 338.1 2035 6574 456
5 SM 100K 10 2403 1024 7945 238
6 237K 20K 50 1589 322 823 214
7 536K 50K 20 66.1 276 3617 99
8 17M 100K 20 1736 809 16902 423
9 30K 10K 20 4.1 0.5 359 2.6
10 881K 100K 20 832 563 6225 411

11e) 11K 34K 20 NA NA NA 57
12 120K 480K 10 NA NA NA 1328
13 655K 100K 20 1176 634 18292 515

Note: #P1I. denotes the number of input points, #P.O. denotes the number
of output points, and Kaz is the maximum iteration number for [13],
[15] and our method.

recommend users determine the number according to the scale
of noises, and it is suggested to be 50~300 for most noisy cases.
In Fig. 13, the number is set to 150.

E. Timing

The running time of most examples in this paper is given in
Table II, the proposed algorithm usually takes a few seconds to
generate a satisfactory result. The efficiency of the algorithm
mainly depends on the number of iterations and the number of
resampling points, while the scale of the original points and the
construction of the KD-tree contribute less. In each iteration,
the computation of RVCs and centroids occupies a major part
of the processing time, which is not linearly proportional to the
number of resampling points.

The running time in the table is obtained by executing
Lloyd+AA. For Fig. 6, the running time of Lloyd+AA is 21.4 s,
while it is 20.2 s for Lloyd’s method. This result clearly shows
the minor difference in efficiency after incorporating Ander-
son acceleration, which is 24 ms per iteration for this example.
Although a slight loss of efficiency occurs, we have a higher
possibility to obtain better results with fewer iterations.

We also incorporate the running times for WLOP [13], Li
and Sun [15] and Lv et al. [18] in Table II, showing efficiency
advantage of our method. The former two are variants of LOP
method [12]. The iterative update of each sample point involves
original points and sample points in its optimization process,
typically consuming more time than our method. In the case of
Lv et al. [18], despite its ability to generate competitive results,
there are extra operations, including point collapse, split and
mappings, during the optimization, resulting in much higher
time cost.

VI. CONCLUSION

We propose a CVT-based point cloud resampling method in
this paper, the conventional CVT energy function is extended
to point clouds by introducing a set of local approximating
quadratic surfaces. Therefore, the resampling points can be
optimized for generating CVTs on the given point cloud,
which is achieved efficiently by Lloyd’s method with Anderson
acceleration. Despite the domain of the proposed CVT energy

1045

function being dynamically changed during the optimization,
the proposed resampling method still produces satisfactory
results. We also add a boundary restriction on the movement
of resampling points, enabling the proposed method to be
available for arbitrary 3D point clouds without any boundary
preprocessing. Our method outperforms the existing methods in
generating uniform and feature-preserving resampling results.

However, we cannot output satisfactory results with a small
number of resampling points, especially when the input data are
complicated, because the local surfaces will poorly approximate
the given points. Exploring more local representations is one of
our future research directions. By contrast, due to the movement
of resampling points, some small details of the input data are
probably coarsened. Decreasing the distance threshold of bound-
ary restriction may alleviate it, but it will result in the difficulty
of smoothing resampling points. Introducing a local threshold
for each resampling point is a promising solution. Finally, most
of the steps in the proposed algorithm can be parallelized, and
we intend to develop an accelerated version on GPUs.

REFERENCES

[1] B. Schwarz, “LIDAR: Mapping the world in 3D,” Nature Photon., vol. 4,
no. 7, pp. 429430, 2010.

[2] D.Bonatto, S. Rogge, A. Schenkel, R. Ercek, and G. Lafruit, “Explorations
for real-time point cloud rendering of natural scenes in virtual reality,” in
Proc. IEEE Int. Conf. 3D Imag., 2016, pp. 1-7.

[3] W.-B. Yang, M.-B. Chen, and Y.-N. Yen, “An application of digital point
cloud to historic architecture in digital archives,” Adv. Eng. Softw., vol. 42,
no. 9, pp. 690-699, 2011.

[4] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard,
“OctoMap: An efficient probabilistic 3D mapping framework based on
octrees,” Auton. Robots, vol. 34, no. 3, pp. 189-206, Apr. 2013.

[5] L. Yu, X. Li, C.-W. Fu, D. Cohen-Or, and P.-A. Heng, “PU-Net: Point
cloud upsampling network,” in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit., 2018, pp. 2790-2799.

[6] A. Akhtar, Z. Li, G. V. d. Auwera, L. Li, and J. Chen, “PU-Dense: Sparse
tensor-based point cloud geometry upsampling,” IEEE Trans. Image Pro-
cess., vol. 31, pp. 4133-4148, 2022.

[71 H. Chen, B. Du, S. Luo, and W. Hu, “Deep point set resampling via
gradient fields,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 45, no. 3,
pp- 2913-2930, Mar. 2023.

[8] H. Song and H.-Y. Feng, “A global clustering approach to point cloud
simplification with a specified data reduction ratio,” Comput.-Aided Des.,
vol. 40, no. 3, pp. 281-292, 2008.

[9]1 B.-Q. Shi, J. Liang, and Q. Liu, “Adaptive simplification of point cloud us-

ing k-means clustering,” Comput.-Aided Des., vol. 43, no. 8, pp. 910-922,

2011.

S. Chen, D. Tian, C. Feng, A. Vetro, and J. Kovacevi¢, “Fast resampling of

three-dimensional point clouds via graphs,” IEEE Trans. Signal Process.,

vol. 66, no. 3, pp. 666-681, Feb. 2018.

Q. Deng, S. Zhang, and Z. Ding, “Point cloud resampling via hypergraph

signal processing,” IEEE Signal Process. Lett., vol. 28, pp. 2117-2121,

2021.

Y. Lipman, D. Cohen-Or, D. Levin, and H. Tal-Ezer, “Parameterization-

free projection for geometry reconstruction,” ACM Trans. Graph., vol. 26,

no. 3, pp. 22—es, 2007.

H.Huang, D. Li, H. Zhang, U. Ascher, and D. Cohen-Or, “Consolidation of

unorganized point clouds for surface reconstruction,” ACM Trans. Graph.,

vol. 28, no. 5, pp. 1-7, Dec. 2009.

X. Cheng, M. Zeng, J. Lin, Z. Wu, and X. Liu, “Efficient Ly resampling of

pointsets,” Comput. Aided Geometric Des., vol. 75,2019, Art. no. 101790.

M. Li and C. Sun, “Refinement of LiDAR point clouds using a super

voxel based approach,” ISPRS J. Photogrammetry Remote Sens., vol. 143,

pp. 213-221, 2018.

Z. Chen, T. Zhang, J. Cao, Y. J. Zhang, and C. Wang, “Point cloud re-

sampling using centroidal Voronoi tessellation methods,” Comput.-Aided

Des., vol. 102, pp. 12-21, 2018.

[10]

(1]

[12]

[13]

[14]

[15]

[16]

Authorized licensed use limited to: Nanchang University. Downloaded on February 23,2025 at 11:26:29 UTC from IEEE Xplore. Restrictions apply.

1046

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]
[29]
[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]
[41]

[42]

[43]

K. Han, K. Jung, J. Yoon, and M. Lee, “Point cloud resampling by simulat-
ing electric charges on metallic surfaces,” Sensors, vol. 21, no. 22, 2021,
Art. no. 7768.

C. Lv, W. Lin, and B. Zhao, “Intrinsic and isotropic resampling for 3D
point clouds,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 45, no. 3,
pp. 3274-3291, Mar. 2023.

T. Schlémer, D. K. Heck, and O. Deussen, “Farthest-point optimized point
sets with maximized minimum distance,” in Proc. ACM SIGGRAPH Symp.
High Perform. Graph., 2011, pp. 135-142.

Z. Chen, Z. Yuan, Y.-K. Choi, L. Liu, and W. Wang, “Variational blue
noise sampling,” IEEE Trans. Vis. Comput. Graph., vol. 18, no. 10,
pp. 1784-1796, Oct. 2012.

F. d. Goes, K. Breeden, V. Ostromoukhov, and M. Desbrun, “Blue noise
through optimal transport,” ACM Trans. Graph., vol. 31, no. 6, pp. 1-11,
Nov. 2012.

D.-M. Yan and P. Wonka, “Gap processing for adaptive maximal poisson-
disk sampling,” ACM Trans. Graph., vol. 32, no. 5, pp. 1-15, Oct. 2013.
D.-M. Yan, J.-W. Guo, B. Wang, X.-P. Zhang, and P. Wonka, “A survey of
blue-noise sampling and its applications,” J. Comput. Sci. Technol., vol. 30,
pp. 439452, 2015.

S. Zhang et al., “Capacity constrained blue-noise sampling on surfaces,”
Comput. Graph., vol. 55, pp. 44-54, 2016.

A.G. M. Ahmed et al., “A simple push-pull algorithm for blue-noise sam-
pling,” IEEE Trans. Vis. Comput. Graph., vol. 23, no. 12, pp. 2496-2508,
Dec. 2017.

Q. Du, V. Faber, and M. Gunzburger, “Centroidal Voronoi tessellations:
Applications and algorithms,” SIAM Rev., vol. 41, no. 4, pp. 637-676,
1999.

Y. Liu et al.,, “On centroidal Voronoi tessellation-energy smoothness
and fast computation,” ACM Trans. Graph., vol. 28, no. 4, Sep. 2009,
Art. no. 101.

S. Lloyd, “Least squares quantization in PCM,” IEEE Trans. Inf. Theory,
vol. 28, no. 2, pp. 129-137, Mar. 1982.

D. G. Anderson, “Iterative procedures for nonlinear integral equations,” J.
ACM, vol. 12, no. 4, pp. 547-560, Oct. 1965.

X.-F. Han et al., “A review of algorithms for filtering the 3D point cloud,”
Signal Process.: Image Commun., vol. 57, pp. 103—112, 2017.

B. Liao, C. Xiao, L. Jin, and H. Fu, “Efficient feature-preserving local
projection operator for geometry reconstruction,” Comput.-Aided Des.,
vol. 45, no. 5, pp. 861-874, 2013.

H. Huang et al., “Edge-aware point set resampling,” ACM Trans. Graph.,
vol. 32, no. 1, pp. 1-12, 2013.

C.R. Qi, H. Su, M. Kaichun, and L. J. Guibas, “PointNet: Deep learning
on point sets for 3D classification and segmentation,” in Proc. I[EEE Conf.
Comput. Vis. Pattern Recognit., 2017, pp. 77-85.

R. Roveri, A. C. Oztireli, I. Pandele, and M. Gross, “PointproNets: Con-
solidation of point clouds with convolutional neural networks,” Comput.
Graph. Forum, vol. 37, no. 2, pp. 87-99, 2018.

P. Hermosilla, T. Ritschel, P.-P. Vazquez, A. Vinacua, and T. Ropinski,
“Monte Carlo convolution for learning on non-uniformly sampled point
clouds,” ACM Trans. Graph., vol. 37, no. 6, pp. 1-12, Dec. 2018.

M.-J. Rakotosaona, V. L. Barbera, P. Guerrero, N. J. Mitra, and M. Ovs-
janikov, “PointCleanNet: Learning to denoise and remove outliers from
dense point clouds,” Comput. Graph. Forum, vol. 39, no. 1, pp. 185-203,
2020.

G. Metzer, R. Hanocka, R. Giryes, and D. Cohen-Or, “Self-sampling for
neural point cloud consolidation,” ACM Trans. Graph., vol. 40, no. 5,
pp- 1-14, Sep. 2021.

W. Feng, J. Li, H. Cai, X. Luo, and J. Zhang, “Neural points: Point
cloud representation with neural fields for arbitrary upsampling,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2021, pp. 18612—18621.
[Online]. Available: https://arxiv.org/abs/2112.04148

D.-M. Yan, B. Lévy, Y. Liu, F. Sun, and W. Wang, “Isotropic remeshing
with fast and exact computation of restricted Voronoi diagram,” Comput.
Graph. Forum, vol. 28, no. 5, pp. 1445-1454, 2009.

B. Lévy and Y. Liu, “Lp centroidal Voronoi tessellation and its applica-
tions,” ACM Trans. Graph., vol. 29, no. 4, 2010, Art. no. 119.

P. Pulay, “Convergence acceleration of iterative sequences. The case of
SCF iteration,” Chem. Phys. Lett., vol. 73, no. 2, pp. 393-398, 1980.

T. Washio and C. W. Oosterlee, “Krylov subspace acceleration for nonlin-
ear multigrid schemes,” Electron. Trans. Numer. Anal., vol. 6, pp. 271-290,
Dec. 1997.

T. Rohwedder and R. Schneider, “An analysis for the DIIS acceleration
method used in quantum chemistry calculations,” J. Math. Chem., vol. 49,
no. 9, pp. 1889-1914, 2011.

[44]
[45]
[46]

[47]

[48]

[49]

[50]

[51]

[52]

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 27, 2025

A. Toth and C. T. Kelley, “Convergence analysis for anderson accelera-
tion,” STAM J. Numer. Anal., vol. 53, no. 2, pp. 805-819, 2015.

H. F. Walker and P. Ni, “Anderson acceleration for fixed-point iterations,”
SIAM J. Numer. Anal., vol. 49, no. 4, pp. 1715-1735, 2011.

N. Ho, S. D. Olson, and H. F. Walker, “Accelerating the Uzawa algorithm,”
SIAM J. Sci. Comput., vol. 39, no. 5, pp. S461-S476, 2017.

Y. Peng et al., “Anderson acceleration for geometry optimization and
physics simulation,” ACM Trans. Graph., vol. 37, no. 4, Jul. 2018,
Art. no. 42.

B. Lévy and N. Bonneel, “Variational anisotropic surface meshing
with Voronoi parallel linear enumeration,” in Proc. 21st Int. Meshing
Roundtable, 2013, pp. 349-366.

F. A. Potra and H. Engler, “A characterization of the behavior of the an-
derson acceleration on linear problems,” Linear Algebra Appl., vol. 438,
no. 3, pp. 1002-1011, 2013.

J. L. Blanco and P. K. Rai, “nanoflann: A C++ header-only fork of FLANN,
alibrary for nearest neighbor (NN) with KD-trees,” 2014. [Online]. Avail-
able: https://github.com/jlblancoc/nanoflann

M. Muja and D. G. Lowe, “Scalable nearest neighbor algorithms for high
dimensional data,” IEEE Trans. Pattern Anal. Mach. Intell.,vol. 36,no. 11,
pp. 2227-2240, Nov. 2014.

E. d’Eon, B. Harrison, T. Myers, and P. A. Chou, “8i voxelized full bodies
- a voxelized point cloud dataset,” iSO/IEC JTC1/SC29 Joint WG11/WG1
(MPEG/JPEG) input document WGI11M40059/WG1M74006, vol. 7,
no. 8, p. 11, 2017.

Yanyang Xiao received the Ph.D. degree in computer
science from Xiamen University, Xiamen, China, in
2020. He is currently an Assistant Professor with
the School of Mathematics and Computer Sciences,
Nanchang University, Nanchang, China. His research
interests include computer graphics and point cloud
processing.

Tieyi Zhang received the master’s degree in com-
puter science from Xiamen University, Xiamen,
China, in 2019. He is currently with NetEase
Games, Hangzhou, China.

Juan Cao (Senior Member, IEEE) received the Ph.D.
degree in applied mathematics from Zhejiang Uni-
versity, Hangzhou, China, in 2009. She is currently a
Professor with the School of Mathematical Sciences,
Xiamen University, Xiamen, China. Her research in-
terests include computer aided geometric design and
computer graphics.

Zhonggui Chen (Senior Member, IEEE) received the
B.Sc. and Ph.D. degrees in applied mathematics from
Zhejiang University, Hangzhou, China, in 2004 and
2009, respectively. He is currently a Professor with
the School of Informatics, Xiamen University, Xia-
men, China. His research interests include computer
graphics, computational geometry, and digital image
processing.

Authorized licensed use limited to: Nanchang University. Downloaded on February 23,2025 at 11:26:29 UTC from IEEE Xplore. Restrictions apply.

https://arxiv.org/abs/2112.04148
https://github.com/jlblancoc/nanoflann

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

